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One human factors challenge is predicting operator performance in novel situations.  Approaches such as 

drawing on relevant previous experience, and developing computational models to predict operator 

performance in complex situations, offer potential methods to address this challenge.  A few concerns with 

modeling operator performance are that models need to realistic, and they need to be tested empirically and 

validated.  In addition, many existing human performance modeling tools are complex and require that an 

analyst gain significant experience to be able to develop models for meaningful data collection.  This paper 

describes an effort to address these challenges by developing an easy to use model-based tool, using models 

that were developed from a review of existing human performance literature and targeted experimental 

studies, and performing an empirical validation of key model predictions.  

INTRODUCTION 

 

This paper describes the development, testing, and 

empirical validation of a research and model-based tool to 

predict operator performance in unexpected workload 

transitions. The tool, called S-PRINT (Space Performance 

Research Integration Tool) was developed for NASA to 

predict and examine astronaut performance on long-duration 

space missions. As described previously (Sebok, Wickens, 

Clegg & Sargent, 2014) this tool was developed as a plug-in to 

IMPRINT (the Improved Performance Research Integration 

Tool; Allender, 2000), and provides a number of 

enhancements and new capabilities within IMPRINT.   

Computational modeling is a technique to predict human 

performance in novel, not-yet-tested and not-easily-tested 

situations, such as long-duration space exploration missions. 

One of the primary advantages of modeling is that it allows 

analysts to evaluate different situations. Specifically, users can 

tweak different parameters – e.g., of the situation in which the 

personnel will be working, the design of the equipment they 

will be using, the number of team members, or the fatigue the 

operators could experience – to identify the effects of these 

factors on predicted performance. Such analyses can be used 

to identify the need for different equipment designs, staffing 

configurations, training, task design, or scheduling.  

There are challenges associated with modeling. First, 

there needs to be a solid, defensible body of work supporting 

the models developed. Another challenge is that models need 

to be validated. They need to be tested against actual operator 

performance in a real or simulated situation that matches the 

model (Wickens & Sebok, 2014). Finally, tool usability is a 

concern. Many different personnel could benefit from being 

able to use models to predict operator performance in novel 

situations. But modeling tools (because of the many 

capabilities they offer and the complexity of what users are 

attempting to do) typically require that the analyst have 

training and significant experience before being able to 

develop intricate models of human performance.  

In this project, we developed a model-based tool for 

NASA personnel involved in planning and monitoring long-

duration space missions. S-PRINT is intended to be used by 

human performance specialists, mission planners, automation 

designers, and possibly even astronauts. All of these personnel 

have an interest in astronaut performance in space missions, 

from different perspectives. Given the variety of users and the 

different tasks they will likely perform, we emphasized the 

need for an easy to use tool.   

S-PRINT is based on a particular worst-case scenario. It 

investigates operator performance in a workload transition due 

to an automation failure. The tool includes a set of component 

models, described below, that were developed to predict the 

effects of relevant factors on human performance. Each of 

these component models were developed based on empirical, 

human-in-the-loop (HITL) data.   

 

APPROACH 

 

Our approach to this work was first to identify key factors 

likely to affect human performance in long-duration space 

missions: fatigue effects on performance, human automation 

interaction, and task overload performance. We developed 

algorithms (or component models) to simulate these factors. 

We also developed task network models of relevant scenarios 

that astronauts might encounter on a space mission.  

As decades of experience with human spaceflight 

indicate, astronauts experience poor sleep in space compared 

with their sleep on earth (Whitmire et al., 2009). Further, on 

long-duration missions, there will probably be many routine 

tasks performed day in and day out. Monotony is a possible 

(but debated) concern. The conditions of poor-sleep-induced 

fatigue and routine tasks can lead to operator complacency in 

monitoring and interacting with automation.   

A second concerning situation is a potential automation 

failure, described in more detail below. In our research, the 

automation failure causes a transition to a much higher 

workload, the third factor. The situation we evaluate, because 

of its “worst case” nature, is one in which a fatigued astronaut 

is unexpectedly confronted with an automation failure that 

requires the operator to select certain tasks and shed others.   

 

Component Models 

 

Fatigue Models.  An integrated fatigue model (Wickens, 

Laux, Hutchins, & Sebok, 2014) was developed based in part 

on an extensive meta-analysis of research (Wickens, Hutchins, 

Laux & Sebok, 2015) that examined the effects of four fatigue 



conditions: sleep deprivation, sleep restriction, circadian cycle 

and sleep inertia effects on operator performance on complex 

tasks. Operator performance is impacted in the task network 

model through performance shaping factors (PSFs) that 

predict longer task completion times or diminished task 

accuracy in fatigued conditions. PSF effects are readily 

modeled and implemented in IMPRINT.  

Investigating fatigue effects on complex tasks is novel, as 

much of the existing fatigue literature and models are based on 

simple task performance, such as the psychomotor vigilance 

task (PVT). Interestingly, our findings revealed that complex 

task performance is generally less impacted by fatigue than is 

simple task performance (Wickens, Hutchins et al., 2015), 

although the impacts do remain substantial. The multitasking, 

challenging nature of complex tasks provides stimulation that 

keep the operator more aroused and engaged in the work.     

Our research also included development of a sleep inertia 

model. This algorithm was also based on data gathered in 

multiple experimental studies. We found that sleep inertia, or 

the grogginess upon first awakening, results in a significant 

drop (a 35 percent decrement) in performance compared with 

baseline, rested performance. This decrement is worse if the 

operator has been sleep deprived or sleep restricted, is 

awakened during circadian night, or is awakened from deep 

sleep (2-6 hours in duration). A recovery period occurs after 

awakening. From the empirical literature, we approximate the 

half-life (where performance is recovered half way back to 

baseline) to be 15 minutes, and full recovery to occur at 30 

minutes after awakening.  

In addition to our custom algorithms developed for 

S-PRINT, IMPRINT also includes fatigue models (e.g., the 

Sleep, Activity, Fatigue and Task Effectiveness [SAFTE] plug 

in; Hursch, 2003) that address sleep-related fatigue effects on 

simple task performance. Because S-PRINT was built within 

IMPRINT, we use these existing SAFTE algorithms to assess 

performance time for simple tasks. 

 

 
 

Figure 1:  The Analytic Sleep Model  

 

Figure 1 depicts how the sleep history of an individual, 

prior to the time at which performance is to be predicted, can 

be distilled into the four different components of our fatigue 

model:  sleep restriction, sleep deprivation, circadian cycle 

effects, and sleep inertia.  Different PSFs are applied to 

individual task performance depending on the astronaut’s 

sleep history and whether the task is simple or complex.  

Human-Automation Interaction Models. The goal of the 

model of human-automation interaction (HAI) was to develop 

a robust, user-friendly model that could be applied across 

many different types of automation designs. 

In developing the HAI model we considered three generic 

properties of an automation system (listed below) that satisfied 

the following criteria: Sufficient data existed on each property 

to make reasonable predictions about effects on human 

performance.  Aspects of the property could be quantified in 

order to make quantitative predictions on human-system 

performance. The property was sufficiently understandable 

that users of S-PRINT could assign values to the property in 

the tool without the need for excessive expertise in HAI. In 

brief, the three properties are: 

1) Degree of Automation. A prior meta-analysis (Onnasch 

et al., 2013) evaluated the effects of automation 

implementation on human and system performance. The 

research considered stages and levels (referred to collectively 

as “degree”) of automation, where stages progress from 

information filtering or alerting, to information integration and 

diagnosis, to decision making, to action or control. The levels 

within each state range from low to high automation authority 

(Parasuraman, Sheridan & Wickens, 2000). Table 1 represents 

these two dimensions. 

 
Table 1:  Stages (columns) and Levels (rows) of Automation 

 
 

The meta-analysis found that system performance 

improves as degree of automation increases, but on the 

infrequent occasions when automation fails, higher degrees of 

automation produce more serious consequences. Our model 

quantifies the degree of automation, by combining the impact 

of higher levels and later stages. 

2. Automation Reliability. Increasing reliability of 

imperfect automation has analogous effects to increasing 

degree of automation. Higher reliability produces better 

performance when automation works as intended, but more 

problematic outcomes occur on the (increasingly rare) 

occasions when it fails. Another meta-analysis of the literature 

(Wickens, Hooey, et al., 2009) documents the much greater 

performance cost of the failure of highly reliable automation.  

3. Alert Absence Penalty. In cases where automation fails, 

we apply an additional penalty when there is no alerting of the 

failure. Such a penalty would be applied if a display continues 

to portray data, even if those data are bad because of a failed 

sensor. On the other hand, if the display goes blank when the 

sensor fails, or if the screen contains a large X over it, the 

penalty would not be applied, as such indications are salient. 

This penalty is partly based on research (Wickens, Clegg, 

Vieane & Sebok, 2015) that investigated automation bias and 

complacency in unexpected failures of an automated guidance 



system. This research found that operators showed a 

significant bias to follow incorrect yet plausible guidance. 

Together all three of these properties (automation degree, 

reliability, and alert absence) are assigned numerical values 

depending on their potential penalty when automation fails. 

These values are summed in an equally weighted fashion, to 

provide an overall cost or performance decrement (a PSF that 

increases task times) when an automation failure occurs.    

Implementation within IMPRINT and S-PRINT. The HAI 

model was implemented in two primary ways in S-PRINT, the 

first of which was described above, using a PSF derived from 

characteristics of the automated system. The second way the 

HAI model was implemented in S-PRINT requires coding on 

the part of the IMPRINT modeler. The model developer 

identifies the specific types of automation to be modeled, and 

characterizes operator tasks for each of the different modes of 

operation. These automation modes typically have different 

implications for operator interaction (e.g., task allocation, 

control actions, information presentation, feedback), so the 

specific tasks associated with different modes must be 

modeled explicitly. The model developer assigns the 

appropriate automation stages and levels (Table 1) to the 

different modes of automation. Further, the modeler specifies 

the tasks that are associated with different automation failure 

types. S-PRINT, as provided to NASA, includes two task 

network models (or scenarios) that have already been 

developed using the HAI coding techniques.   

The S-PRINT (novice) user loads a model, selects the 

automation mode to investigate, and specifies the reliability of 

that mode for different possible failure types. The S-PRINT 

user decides whether or not to run the model with a failure, 

and – if a failure is to occur – identifies the specific failure and 

the salience of the indication. The S-PRINT HAI PSF model is 

then invoked to calculate and apply appropriate penalties to 

operator performance based on the failure of highly-

automated, highly reliable systems, particularly when those 

failures are of low or no salience.  

Strategic Task Overload Management Model.  The third 

component model addresses operator task selection behavior 

when the operator is overloaded.  The Strategic Task Overload 

Model (STOM; Gutzwiller, Wickens, Santamaria, 2015; 

Wickens, Vieane, Clegg, Sebok & Janes, 2015) predicts 

operator task selection based on four task factors (Gutzwiller 

et al, 2014). The interest or engagement the operator has in the 

task, the priority of the task, the difficulty of the task, and the 

salience of the task all affect the likelihood that an operator 

will choose to stay with an on-going task or switch to a 

potential alternate task. If the decision is to switch, STOM 

predicts which alternate task is the most likely to be selected. 

 

Task Network Models / Scenarios 

 

In addition to the component models, S-PRINT includes 

two IMPRINT task network model scenarios that simulate an 

astronaut performing complex tasks with different automated 

systems. The tool provides output files that give distribution 

data on predicted task performance. The primary task network 

model for this project addresses a possible scenario in a long-

duration space exploration mission. An astronaut is using a 

robotic arm to transport another astronaut, while also 

monitoring an environmental process control system that 

maintains the atmospheric conditions in the spacecraft. While 

current day space operations include considerable support 

from ground personnel (e.g., monitoring and controlling the 

atmospheric process control system on the International Space 

Station), lengthy communications delays expected in long 

duration missions will require that control functions currently 

managed by ground personnel will need to be taken over by 

astronauts or by automation.    

Both automated systems in the primary IMPRINT model 

(robotic arm and process control) can be used in either manual 

or automated mode. The manual mode of the robotic system 

requires the operator to use joysticks to manipulate the arm 

through a trajectory. In the automated mode, the robotic 

system executes the trajectory, and the operator monitors 

progress and intervenes if needed. The process control system 

indicates when a fault or deviation occurs. The manual mode 

requires that the operator diagnose and manage the problem. 

In the automated mode, the process control system provides 

specific diagnosis and repair guidance.    

Even without any automation failures, the baseline 

scenario model introduces a process control situation requiring 

astronaut intervention. Different automation failures can 

occur. The robotic arm can require the operator to bypass an 

unexpected obstruction. The automated mode of the robotic 

arm control can fail to work properly, necessitating operator 

intervention and a return to manual mode. The decision aid for 

the process control system can fail to give guidance, or it can 

give an incorrect diagnosis and incorrect guidance. 

In addition to the robotic arm - process control scenario, 

S-PRINT includes a model to evaluate and compare operator 

performance using one of three fire detection and suppression 

systems. The least automated system is a simple smoke 

detector that sounds when it senses smoke. An intermediate 

system provides an annunciation, but it also includes a digital 

map that indicates the location of the triggered detector. The 

most highly automated system includes the detector and 

locator map, and it includes a sprinkler that will put out the 

fire. Automation failures can occur, including, e.g., failure to 

detect the fire, indication of an incorrect location, or failure to 

suppress the fire.     

 

TOOL DEVELOPMENT 

 

Two main goals with S-PRINT were 1) to provide a 

simple (novice mode) interface to allow a more diverse group 

of users (not only human performance modeling experts) to 

use the tool to obtain meaningful results, and 2) to include the 

capabilities to allow expert users (modeling experts) to 

develop a variety of relevant scenarios. The intent is that 

NASA (or any other future user) will be able to have internal 

experts or consultants develop new scenarios as needed, while 

many different users could use the tool to investigate 

particular situations in which they have interest.   

S-PRINT includes a graphical user interface, shown in 

Figure 2, that provides users with access to the options they 

can investigate. They select the scenario of interest (e.g., the 

robotic arm and process control scenario or a fire detection 



and suppression system, described above), and then specify 

characteristics of the situation they want to investigate. 

S-PRINT runs the underlying IMPRINT task network model 

to generate data on predicted operator performance. Table 2 

identifies the different types of analyses that S-PRINT users 

can perform. The first column identifies the topic of interest, 

the second column lists the inputs that the user provides to the 

interface, and the third column indicates the relevant result 

files for answering the questions of interest. 

 

 
 

Figure 2:  S-PRINT Interface 

 

 
Table 2:  S-PRINT Interface – Topics, Inputs, and Outputs 

 
 

The component models for fatigue, automation, and task 

overload management were described previously.  In addition, 

S-PRINT allows users to evaluate the effects of Operator 

Factors and individual task Workload on predicted 

performance. These two capabilities are standard IMPRINT 

features that were leveraged in this project. The effects of 

protective clothing (such as the use of fully-enclosed, helmet, 

gloves, and contained breathing apparatus) on task completion 

time and task accuracy, have been identified in previous 

studies on Level A protective chemical gear (Sargent & 

Murray, 2009) and included within IMPRINT. Task selection 

strategies (in addition to STOM) and overload thresholds have 

been included in IMPRINT (Little et al., 1993).      

 

S-PRINT BETA TEST 

 

Purpose 

 

To evaluate the usability and effectiveness of the 

prototype tool, the training program, and model predictions, 

we conducted a beta test at NASA Johnson Space Center. Ten 

participants, representative of potential users, volunteered to 

attend training, perform tasks, and provide feedback on the 

tool. These participants included representatives from 

Behavioral Health and Performance, Space Human Factors, 

Flight Controllers, and Biomedical Engineers. The beta test 

version included the IMPRINT model of an operator using a 

fire detection / locator / suppression system.   

 

Methods 

 

We conducted a 3-hour training session, in which we 

explained the purpose of the project, demonstrated all features 

of the tool, and showed how to create and run scenarios, and 

evaluate results. All participants received handouts of the 

presentations. They each had a laptop computer with the beta 

version of S-PRINT, so they could follow along using the tool.    

Five tasks were assigned during the training. These 

addressed different aspects of operator performance that can 

be evaluated with S-PRINT: fatigue conditions, automation 

modes, automation failure types, task factors, and an “across 

the waterfront” test of different scenarios (best case to worst 

case).  All participants volunteered for 1 task, so 2 participants 

were assigned to each of the 5 tasks. Finally, all participants 

were given a questionnaire regarding the overall performance 

and ease use of the tool, and understandability of results. 

 

Results 

 

 Of the 10 participants, 8 provided feedback on the 

questionnaire and created the data files of results for their 

tasks (2 were unable to continue participating). We obtained 

results for all of the 5 tasks. Key findings were that result files 

needed to be improved, the fatigue model (for 1 participant) 

produced identical results across vastly different conditions, 

and the instructions and handouts were necessary for 

participants to complete their tasks.  

 

Updates to the Tool   

 

Based on the findings of the beta test, several changes 

were made to the tool. First, the reporting capability was 



improved. We provided a button so users could access reports 

directly from S-PRINT, and we provided a reduced set of 

results deemed most useful to S-PRINT users, based on their 

feedback. We grouped the reports into four categories (input, 

overall performance, fatigue effects, and task selection) on the 

report selection window to help users predict the content. 

Further, we pruned the data provided in the reports to include 

only those factors stated to be of relevance by S-PRINT users.   

With the Fatigue model, we realized that two pull-down 

menus were used for sleep histories. One was used to create a 

custom sleep history, and one was to select the sleep history.  

Users could easily choose the wrong menu. Our solution was 

to make a unique tab to create sleep histories, and another tab  

to assign operator factors, including individual sleep history.   

The finding regarding the importance of detailed 

instructions led us to include a help system within S-PRINT.  

The help system describes the capabilities of the tool, 

demonstrates how to perform specific tasks, and shows how to 

compare the results of different model runs. 

 

Summary 

 

The S-PRINT tool was found to be useful in terms of the 

questions it helped researchers address and the results it 

provided. Using IMPRINT as the basis for the tool allowed us 

to leverage sophisticated workload models, existing fatigue 

models,  performance shaping factors, and reporting 

capabilities. Our work extended these models by accounting 

for fatigue effects on complex task performance, sleep inertia, 

and providing a new strategy for selecting tasks in an overload 

condition. In addition, we implemented a new capability to 

assess HAI. The IMPRINT human performance modeling 

environment provides end users with a product that can be 

used by both novices and modeling experts. 

 

MODEL VALIDATION 

  

One additional, and critical, step in this research effort 

was an empirical validation study. This was performed to 

gather actual human performance data in the same conditions 

evaluated by the human performance model. The validation 

effort, described in Wickens, Vieane, et al., 2015, replicates 

most elements of the scenario described above. Participants 

worked with different modes of operation using a robotic arm 

simulation and a process control simulation. In the 

experiment, the process control system unexpectedly failed, 

thus creating a workload transition.  

In the validation effort, we compared model predictions 

of operator performance with actual empirical data. These 

comparisons included task completion times or robotic arm 

trajectories completed, errors made, and operator workload.  

In particular, the task switching model was evaluated in more 

detail. Correlations were used to determine the degree to 

which the model correctly predicts differences in performance 

across the conditions. The validation study provided us an 

opportunity to improve the model so it delivers more accurate 

predictions of operator performance. 

 

CONCLUSIONS 

 

In conclusion, human performance modeling provides a 

powerful tool for predicting operator and system performance 

in unknown situations. By basing the models on empirical 

operator performance, and conducting validation studies, we 

provide evidence that these models are effective prediction 

tools. In addition, to be beneficial to researchers, it is 

necessary that these models be easy to use. This paper 

describes an approach to developing an easy-to-use model-

based tool, and to developing and empirically validating 

research-based models.  
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