Enhancing the Reporting and Analysis of Anomalies Using Systematic Fuzzy Data Methods and Software

Spacecraft Anomalies and Failures Workshop
Chantilly, VA
October 6-7, 2015
Sponsors: NRO and NASA

Dr. Bill Vesely
Manager, Technical Risk Assessment
Office of Safety and Mission Assurance
NASA
Main Points of Presentation

• Fuzzy data are systematically characterized for evaluation
 • Qualitative characterizations, categorical characterizations, quantitative intervals
• Using methods for handling fuzzy data, important information is obtained
 • Statistics, patterns, risk estimates
• Fuzziness and uncertainties are incorporated in the evaluations
• Software provides efficient implementation for large datasets
• Satellite anomaly data provide a rich source of fuzzy data that can be mined
• Example applications illustrate the information obtainable
• The applications are examples of techniques widely used in data mining
Example Fuzzy Characterizations of Satellite Anomaly Data

• Having MMOD qualitative likelihoods:
 “Improbable”, “Possible”, or “Probable”

• Having MMOD indicators:
 “Associated with Abrupt Changes”, “Associated with Trends”, “Associated with Multiple Effects”

• Having severity categories:
 “Very Low”, “Low”, “Medium”, “High”, or “Very High”

• Having fuzzy causes:
 “Possible Random Failure”, “Possible MMOD Impact”

• Having approximate penetrations:
 “Less than ~1 mm”, “~1 mm to ~1 cm”, and “Greater than ~1 cm”
Methods of Fuzzy Data Analysis

• Associate a range of possible values with each fuzzy category.
• Assign a membership function to the range:
 • A simple but effective characterization is to treat all values in a range as being equally possible
 • Combine the membership functions using interval operators and fuzzy operators
• For statistical analysis, the memberships are translated to likelihoods of possible values in the range
• Use computer software to efficiently carry out the evaluations which involve simulations and repetitive evaluations
Example Application of the Characterization and Analysis of Fuzzy Anomaly Data

• Two fuzzy anomalies are analyzed for their MMOD indications
• For the first fuzzy characterization, each anomaly is characterized as being “Improbable”, “Possible”, and “Probable” of being an MMOD hit
• For the second characterization, more detailed indicators are used to characterize each anomaly as being an MMOD hit
• The accumulated fuzzy MMOD count is determined and compared to model prediction
• Fuzziness and uncertainties are taken into account in the assessment
• Significant conclusions are obtained
The Software Program AgenaRisk® is Used

• AgenaRisk® is used for the examples and is one of several available software packages that can handle probabilistic and statistical analysis of fuzzy data.
• AgenaRisk® is representative of network analysis programs that are widely used
• A free version of the software is available on the AgenaRisk® website
• Networks are graphically constructed to show the input data and relationships
• Fuzzy set analysis and fuzzy statistical analysis can be performed
• Fuzzy Bayesian analysis can also be performed to update prediction parameters with data but will not be used in the evaluations
• EXCEL® interfaces and detailed plots and tables are provided
• The results illustrate the types of information obtainable from such programs
MMOD Fuzzy Characterization for Each Anomaly: Improbable, Possible, Probable

MMOD Count Accumulation Accounting for Fuzziness in Individual Counts

Comparison of Observed Versus Predicted Counts

Basic Network for Aggregating Fuzzy MMOD Observations and Comparing with MMOD Prediction
Network With Fuzzy MMOD Characterizations of the Anomalies Shown as Inputs (Scenario 1)
Analysis Results of the Fuzzy MMOD Observed Count and Model Comparison

- **Input Observed Fuzzy MMOD Characterizations**
- **Accumulated Observed MMOD Counts Shown as a Fuzzy Count Probability Distribution Accounting for the Fuzzy Data**
- **Difference Between the Observed and Predicted MMOD Counts Shown as a Probability Distribution Accounting for the Fuzzy Data and Model Uncertainties**

Input Model Parameters Including Parameter Uncertainties
- **Model Predicted MMOD Counts Shown as a Count Probability Distribution Accounting for Model Uncertainties**
- **Confidence that Predicted Counts is Greater Than the Observed Counts Accounting for the Fuzzy Data and Model Uncertainties**
Detailed Graphical Outputs Display the Results

- Observed MMOD Total Counts Accounting for the Fuzzy Data
- Model Predicted MMOD Counts Accounting for Model Uncertainties
- Difference of Predicted Minus Observed Counts
- Confidence Predicted Counts Greater Than Observed Counts
Detailed Tabular Numerical Output

<table>
<thead>
<tr>
<th>Risk Object</th>
<th>New Risk Object</th>
<th>Node Name</th>
<th>Difference Between Predicted and Observed</th>
<th>Node Id</th>
<th>DPO</th>
</tr>
</thead>
</table>

Summary Statistics

- **Mean**: 2.163394226
- **Median**: 1.726572829
- **Variance**: 4.071118763
- **Standard Deviation**: 2.017701356
- **Lower Percentile [25.0]**: 0.717304169
- **Upper Percentile [75.0]**: 3.084286775

<table>
<thead>
<tr>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Interval Probability</th>
<th>Probability Less Than</th>
<th>Probability Greater Than</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-0.75</td>
<td>0.0020</td>
<td>0.0020</td>
<td>0.9980</td>
</tr>
<tr>
<td>-0.75</td>
<td>-0.625</td>
<td>0.0059</td>
<td>0.0079</td>
<td>0.9921</td>
</tr>
<tr>
<td>-0.625</td>
<td>-0.5</td>
<td>0.0110</td>
<td>0.0189</td>
<td>0.9811</td>
</tr>
<tr>
<td>-0.5</td>
<td>-0.375</td>
<td>0.0146</td>
<td>0.0335</td>
<td>0.9665</td>
</tr>
<tr>
<td>-0.375</td>
<td>-0.25</td>
<td>0.0171</td>
<td>0.0507</td>
<td>0.9493</td>
</tr>
<tr>
<td>-0.25</td>
<td>0</td>
<td>0.0407</td>
<td>0.0914</td>
<td>0.9086</td>
</tr>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.0188</td>
<td>0.1102</td>
<td>0.8898</td>
</tr>
<tr>
<td>0.1</td>
<td>0.5</td>
<td>0.0877</td>
<td>0.1978</td>
<td>0.8022</td>
</tr>
<tr>
<td>0.5</td>
<td>0.9</td>
<td>0.0961</td>
<td>0.2939</td>
<td>0.7061</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>0.0260</td>
<td>0.3198</td>
<td>0.6802</td>
</tr>
<tr>
<td>1</td>
<td>1.5625</td>
<td>0.1413</td>
<td>0.4612</td>
<td>0.5388</td>
</tr>
<tr>
<td>1.5625</td>
<td>1.84375</td>
<td>0.0666</td>
<td>0.5277</td>
<td>0.4723</td>
</tr>
<tr>
<td>1.84375</td>
<td>2.125</td>
<td>0.0611</td>
<td>0.5889</td>
<td>0.4111</td>
</tr>
<tr>
<td>2.125</td>
<td>2.40625</td>
<td>0.0550</td>
<td>0.6439</td>
<td>0.3561</td>
</tr>
<tr>
<td>2.40625</td>
<td>2.6875</td>
<td>0.0486</td>
<td>0.6925</td>
<td>0.3075</td>
</tr>
<tr>
<td>2.6875</td>
<td>2.96875</td>
<td>0.0424</td>
<td>0.7349</td>
<td>0.2651</td>
</tr>
<tr>
<td>2.96875</td>
<td>3.25</td>
<td>0.0367</td>
<td>0.7716</td>
<td>0.2284</td>
</tr>
<tr>
<td>3.25</td>
<td>3.53125</td>
<td>0.0315</td>
<td>0.8032</td>
<td>0.1968</td>
</tr>
<tr>
<td>3.53125</td>
<td>3.8125</td>
<td>0.0270</td>
<td>0.8302</td>
<td>0.1698</td>
</tr>
<tr>
<td>3.8125</td>
<td>4.09375</td>
<td>0.0230</td>
<td>0.8532</td>
<td>0.1468</td>
</tr>
<tr>
<td>4.09375</td>
<td>4.375</td>
<td>0.0197</td>
<td>0.8729</td>
<td>0.1271</td>
</tr>
<tr>
<td>4.375</td>
<td>4.9375</td>
<td>0.0312</td>
<td>0.9040</td>
<td>0.0960</td>
</tr>
<tr>
<td>4.9375</td>
<td>5.5</td>
<td>0.0228</td>
<td>0.9268</td>
<td>0.0732</td>
</tr>
<tr>
<td>5.5</td>
<td>6.0625</td>
<td>0.0171</td>
<td>0.9439</td>
<td>0.0561</td>
</tr>
<tr>
<td>6.0625</td>
<td>6.625</td>
<td>0.0129</td>
<td>0.9567</td>
<td>0.0433</td>
</tr>
<tr>
<td>6.625</td>
<td>7.75</td>
<td>0.0169</td>
<td>0.9736</td>
<td>0.0264</td>
</tr>
<tr>
<td>7.75</td>
<td>8.875</td>
<td>0.0180</td>
<td>0.9916</td>
<td>0.0084</td>
</tr>
<tr>
<td>8.875</td>
<td>10</td>
<td>0.0084</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
Individual Anomaly MMOD Indicators
Alternatives for each indicator:
No Indication
Possible Indication

Amalgamation of Individual Indicators for the Overall MMOD Indication of a Count

MMOD Count Accumulation Accounting for Fuzziness in Individual Counts

Comparison of Observed Versus Predicted Counts

Network with MMOD Indicators and Model Prediction Parameters
More Detailed Network with Anomaly MMOD Indicators and Model Prediction Parameters Shown as Inputs (Scenario 1)
Computer Screen of the More Detailed Network and Analysis Results from the Program AgenaRisk®
Summary

• Fuzzy anomaly data are systematically characterized to mine information
• The fuzzy characterizations can be fuzzy likelihoods
• The fuzzy characterizations can also be fuzzy indicators
• Using systematic fuzzy data methods, important information is thereby obtained
• Statistics, risks, and comparisons with prediction are examples of results
• Fuzziness and uncertainties are incorporated
• Software provide efficient implementation for larger datasets
References

1. AgenaRisk© (Description and User Manual at www.agenarisk.com)
2. Carlo Bertoluzza and Maria Gil, Statistical Modeling: Analysis and Management of Fuzzy Data, Springer Verlag, 2002
6. Olga Pons and Maria Vila, Knowledge Management in Fuzzy Data Bases, Springer Verlag, 2000
7. Timothy Ross and Jane Booker, Fuzzy Logic and Probability Applications, ASA-SIAM, 2002