Lab Animal Allergies
A Common Problem in an Uncommon Place - The ISS

William J. Tarver, MD MPH
Acting Chief, Space and Occupational Medicine Branch
Johnson Space Center
What do **TECHSHOT** and the **Center for the Advancement of Science in Space (CASIS)** have in common?
A YouTube Video Connecting Techshot and CASIS

Space Is In It
Lab Animal Allergies
The Risk

• Up to 40% of people newly exposed to lab animal allergens (allergy causing agent) develop some sort of allergic response after 2-3 years*
 – 30% develop allergies in the 1st year
 – 70% occur over the next 2 years

• Most astronauts will be new to this type work i.e. “newly exposed”

Past Rodent Research Missions

<table>
<thead>
<tr>
<th>Mission</th>
<th>Launch Date</th>
<th>Primary Science Objective</th>
<th>Mice</th>
<th>Duration</th>
<th>On-orbit Measurements</th>
<th>Hardware</th>
<th>Dissections</th>
<th>Ops Timeline</th>
<th>Firsts</th>
<th>Mission Success Criteria</th>
<th>Patches</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR1: National Lab - Novartis, and Verification of Rodent Research Hardware; SpX-4</td>
<td>September 21, 2014</td>
<td>Rodent Research Hardware and Operations Validation</td>
<td>20 - C57BL/6 Female</td>
<td>33 days (NASA), 17.5 days (CASSIS)</td>
<td>Bone densitometry scan</td>
<td>Standard RR Hardware</td>
<td>Hindlimb dissection & fixation (1 leg/mouse) Spleen dissection and preservation in RNAlater Liver dissection</td>
<td>CASIS: 5 mice/day, 2 days NASA: 10 mice/day (2 dissected and 8 intact carcasses frozen)</td>
<td>Rodent Habitats on ISS, Transporters on Dragon, AAU, dissections in MSG, new dissection table, 33 d on orbit, + many more, tissue fixation kit, carcass freezing kit, daily health check with video downlink</td>
<td>SS RR1 Research Implementation Plan, SSP 50957A</td>
<td></td>
</tr>
<tr>
<td>RR2: National Lab - Novartis, SpX-6</td>
<td>April 14, 2015</td>
<td>Evaluate muscle atrophy in microgravity and identify molecular pathways and targets that could be used to develop novel therapies for muscle disease.</td>
<td>20 - C57BL/6 Female</td>
<td>50d in habitat</td>
<td></td>
<td>Standard RR Hardware</td>
<td>Blood draw and separation Leg and eye fixation Leg dissection and freezing Carcass freezing</td>
<td>5 mice/group processed at each timepoint (week 1, 2, 4 and 8)</td>
<td>Soft Tissue Fixation Kit and Cardiac Puncture Kit, 60 d on orbit, Bone densitometry with live mice, food bar changeouts, Water refill</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
Near-term Rodent Research Missions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Launch Date</td>
<td>SpX 8: 1/3/16</td>
<td>SpX10: 6/10/16</td>
<td>SpX12: 12/17/16</td>
</tr>
<tr>
<td>Primary Science Objective</td>
<td>Evaluate effects of a drug aimed at preventing muscle loss</td>
<td>Characterize events associated with bone healing/tissue regeneration in a microgravity environment</td>
<td>Osteoporosis drug evaluation</td>
</tr>
<tr>
<td>Mice</td>
<td>20 – BALB/c Female (10-14 wks at launch)</td>
<td>40 – C57BL/6 male (10 wks at launch) with pre-flight surgery</td>
<td>40 - C57BL/6 female (12 wks old at launch)</td>
</tr>
<tr>
<td>Duration</td>
<td>45 days, return samples on SpX-9</td>
<td>Approx 28 days (minimum L+20d, max Dragon undock -7d)</td>
<td>60 days</td>
</tr>
<tr>
<td>On-orbit Measurements</td>
<td>Bone densitometry scan and Grip strength assessment</td>
<td>None</td>
<td>Bone densitometry scan</td>
</tr>
<tr>
<td>Dissections</td>
<td>Blood draw and separation, Leg fixation, Carcass freezing</td>
<td>Blood samples (frozen), Carcasses (frozen), Fixed hind limbs (only 20, one leg from each mouse)</td>
<td>Cardiac puncture and blood collection Carcass frozen (MELFI). TBD whether for only 20 mice or all 40.</td>
</tr>
<tr>
<td>Pre-Launch</td>
<td>Grip Strength, injection, Bone Scan</td>
<td>Bone Defect Surgery & Therapy, tail tattoo, x-ray</td>
<td>Ovary removal surgery</td>
</tr>
<tr>
<td>Ops Timeline</td>
<td>Injections every 2 weeks. L+ 30d: grip strength and bone densitometry with recovery. L+45d: grip strength, bone densitometry, dissection. 7 consecutive days of crew time</td>
<td>Dissections start a minimum of L+20 days. All dissections must occur in 5 consecutive days and must be completed in time for all samples to return on SpX10</td>
<td>IP and SQ Injections to occur every 2 weeks on-orbit. L+4 to 5 weeks bone densitometry with recovery. Dissections at L+56d (min), bone densitometry scans just prior to euthanasia (dissections to occur in minimum possible consecutive days)</td>
</tr>
<tr>
<td>Firsts</td>
<td>Anesthesia Recovery, Grip Strength</td>
<td>40 mice. Male mice. Mouse enrichment (TBD), surgerized mice (mice with bone defects)</td>
<td>Possible live return Lid-based Food</td>
</tr>
<tr>
<td>Misc.</td>
<td></td>
<td>Direct GLACIER insert (Carcass and blood in the same ziplock bag) +4 MELFI fixed hindlimb (no fixative swap)</td>
<td>Change back to female mice</td>
</tr>
</tbody>
</table>

Male mice are more allergenic than females
Tissues Collected/Planned

<table>
<thead>
<tr>
<th></th>
<th>Spleen</th>
<th>Liver</th>
<th>Hind Limbs</th>
<th>Blood</th>
<th>Eye</th>
<th>Carcass</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR1 (SpX-4)</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RR2 (SpX-6)</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RR3 (SpX-8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RR4 (SpX-10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR5 (SpX-12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hind limbs to study muscle atrophy, bone loss, wound healing, bone repair (fixed and frozen)
Spleens to assess RNA quality, antibody response to vaccine (refrigerated then frozen)
Livers to study enzyme contents, gene expression, protein identification (frozen)
Blood to assess hormone changes at different time points, antibody response to vaccine (frozen)
Eyes to assess visual impairment issues (fixed)
Carcasses: remaining tissues available for Biospecimen Sharing Program (frozen)
Overview

- Historical perspective – animals in space
- Review medical knowledge base
- Review JSC’s astronaut protection process
Animal Pioneers in Space
Habitat, Transporter, Access Unit

Photos courtesy of Ames Research Center, Janet Beegle, Rodent Research Project Manager
Habitat

The Habitat is used to house the mice on the International Space Station. It holds 10 mice (5 per side) for up to 60 days. The Habitat includes food, water, airflow and filtration, lights for day/night cycle, and cameras for health checks from the ground.
The Transporter is used to transport the mice on SpaceX. Holds 20 mice (10 per side)
Access Unit

The Animal Access Unit is used to transfer the mice from the Transporter into Habitats and from the Habitat to the Microgravity Science Glovebox.

To make the transfer, the AAU mounts onto either the Transporter or Habitat.
Habitat w/Access Unit

AAU mounted on the Habitat
ISS Filters
Summary of Human Experience with Lab Animals In Space prior to ISS

• We’ve sent animals into space without human presence in the space vehicle
• We’ve completed short duration missions (up to 18 days) with animals onboard manned vehicles, e.g. the space shuttle, but minimal handling of the animals.
• The actual animal handlers were ground based.
Compare and Contrast

Human Experience Base vs ISS Planned Use

• Astronauts expected to handle the animals
 – Experience base: Minimal
 – ISS Plan: Yes

• 24/7 exposure to animals
 – Experience base: Yes
 – ISS Plan: Yes

• Length of time living with the animals
 – Experience base: short duration
 – ISS Plan: long duration

• Space vehicle extensively cleaned between missions
 – Experience base: Yes
 – ISS Plan: No
Lab Animal Allergies
Risk Numbers*

• Up to 40% of people newly exposed to lab animal allergens (allergy causing agent) develop some sort of allergic response after 2-3 years
 – 30% develop allergies in the 1st year
 – 70% occur over the next 2 years
 – Most astronauts will be new to this type work

• “Allergies” means
 – Itchy eyes
 – Itchy / runny nose (most commonly treated diagnosis)
 • aka allergic rhinitis (already present in ~30% of astro corps)
 – Asthma (least common but not rare, ~10% of the 40%)

*See references at end of presentation
Lab Animal Allergies

Risk Factors

• Atopy
 – Atopy* is the genetic predilection to produce specific immunoglobulin E (IgE) following exposure to allergens
 – Atopic dermatitis (0% of corps)
 – Allergic Rhinitis (~1/3 of corps)
 • Mostly allergies to pollens (not the same)
 • 2 individuals with allergies to pets (is a risk)
 – Asthma (0% of corps)

*Definition from UpToDate
Lab Animal Allergies
Background Knowledge

• Animal allergens can be found in the urine (major source due to persistent proteinuria), saliva, hair and dander
 • Specific proteins have been identified e.g. the Mouse Urine Protein or “MUP”

• Routes of exposure include inhalation (primary route) and direct skin contact

• Type 1, immediate hypersensitivity (IgE)

• Allergens can reside on particles of > 0.5 to < 10 microns (respirable)

• Allergens may be carried in workers hair, on skin, or on clothing.

Lab Animal Allergies
Avoiding Allergy Symptoms

• If you prevent exposure to the allergens then you will prevent the allergy symptoms (Goodno and Stave*, 0% when using PPE)

• Basic principle in occupational medicine – interrupt the exposure/symptom magnification cycle. Ex. Latex gloves.

• Basic immunology fact: first comes the sensitization, then the allergy.

 NOTE: sensitization ≠ allergy

Lab Animal Allergies
Airborne Concentrations

– No OSHA airborne particle standard

– *Institute of Occupational Medicine, UK (S. Gordon)*:
 • Suggested risk of sensitization and development of symptoms to mice is increased MUP concentrations >5ng/m³

– *Johns Hopkins University/Department of HSE*:
 <1ng/m³
Astronauts and Mousetronauts

• Astronauts will undergo
 – Generic training during pre-assigned phase
 – Skills-based training 6-9 m prior to mission
 – Mission specific training 3 m prior to mission

• Wear PPE during training
 – Gloves worn during handling of mouse
 – Clean/disposable lab coat removed upon departure from lab
 – Respirator mask when in the lab
Astronaut Occupational Health Program (AOHP)

• Reviewed training program
 • Inspected training area and practices
 • Established PPE and use of vent hood

• Biomonitoring (blood testing) annually monitoring for sensitization
 – ImmunoCAP (serum assay)
 • Mouse epithelial and urine proteins
Animal Training Facility - Post
Microgravity Science Glovebox Facility Hardware Overview

Removable Side Ports
16” diameter on both Left and Right sides for setting up hardware in Work Volume

Glove Ports
Four identical glove ports are located on the left and right side loading ports and the front window

DC Power Switching And Circuit Breakers

Stowage Drawers

Video System Drawer

Front Window Glove Ports
Four 6” diameter glove ports can be fitted with any of three different sized gloves or blanks

Core Facility
Retractable Core Facility includes the Work Volume, Airlock, Power Distribution & Switching Box, and the Command and Monitoring Panel

Airlock
Provides a “Pass Through” for hardware to enter the Work Volume without breaking Containment. The lid of the Air Lock opens up into the floor of the Work Volume

Airlock Glove Port with Blank
A Single 4” diameter glove port can also be fitted with any of three different sized gloves or a blank

Stowage Drawers
On-Orbit Configuration (US Lab)
• HEPA filtration is designed to minimize contaminants in air by controlling particulates (remove 99.97% of particulates >0.3 microns)
• Accumulated dust is complex (e.g. food residue, skin particles, etc.)
Rodent Research Habitat
Long Duration Filter
(Exploded View)

Sealing Gasket (Direct Interface with Habitat)
Aluminum Frame (Frame is re-usable)
4x4 Mesh Screen
Bondina (20ml of Phosphoric Acid)
Sorbent (20ml of Phosphoric Acid)

Top Cover Assembly

4x4 Mesh
Sorbent Pad
Bondina (20ml of Phosphoric Acid)
Sorbent Pad
Zeolite
Sorbent Pad
4x4 Mesh Screen

Sorbent Pad

200 Mesh Teflon Screen
3D Printed Fame (Top Half)
Chemically Treated Activated Carbon
3D Printed Frame (Bottom Half)

~99% reduction in Mus.m-1
(Sorbent Pad samples compared to Main Housing samples)

Mus.m-1 average 190 ng/25 cm²
Mus.m-1 average 13014 ng/25 cm²

Diagram courtesy Ames Research Center
Universal Sorbent Pad (M-YH): absorbs liquids, treated with phosphoric acid. (20-23g per sheet)

Air Gap: eliminates capillary action of fluid between components. (~0.07”)

4x4 Stainless Steel Mesh: internal habitat fecal barrier

Bondina (AH-01880): suspends phosphoric acid, spreads liquids for drying.

4x4 Stainless Steel Mesh: contains and protects activated carbon from moisture.

Zeolite (Z3264): tuned to react with ammonia, absorption.

Ammosorb Activated Carbon (1.0-3.0mm): phosphoric acid treated for the removal of lightweight organic compounds.

G200 Filter Media (E668): captures 94.8% of particles 0.1 micron and larger

200 Mesh Teflon Screen (13-074): contains ands protects activated carbon from moisture.
AMES 90-Day Rodent Habitat Filter Evaluation

Amount of Mus.m-1 per filter sample (ng/25cm²)

Control

Sorbent pad 90-day Bio-test
Lab Animal Allergies and Space Missions

• Terrestrial data provides a good idea of what happens to people that go into this line of work
• This data cannot be expected to translate 100% to ISS environment
 – Microgravity/Airflow differences
 – Closed loop environment system
 – 24 hour exposures for months at a time
 • More like owning a pet in a very clean home IF the hardware works as designed
 – Immune system dysfunction
• We must prepare for the worst while hoping for the best
Release of allergens into the closed ISS atmosphere

Animal bites – protective gloves can go over nitrile, but optional because some find them bulky and awkward. Concern for infection.

Needle sticks – similar concerns to any medical environment, plus dirty animals.

Sharps – scalpels, scissors, bone cutters, dirty animals *in microgravity!*

Allergic reactions
 - mild – itchy watery eyes, sneezing
 - mod – sinus congestion, skin rashes
 - severe – respiratory distress, vascular headache
MEDICATIONS

Desired: *Sufficient medications for six crewmembers*

1. Oral and Ophthalmic antihistamines
2. MDIs - Short and Long acting B-Agonists, Steroid
3. Topical Steroids
4. Oral and IM steroids
5. Nasal steroid and saline flush (seamist)
6. Antiobiotics - Oral, IM, IV Pasteurella, Streptobacillus Monoliformis
7. Imitrex/Ergotamines?
References

1. Laboratory Animal Allergy Prevention Program (LAAPP), National Institutes of Health Division of Occ Health and Safety, revised May 24, 2011.

