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Abstract—An algorithm for automating correspondence detection
between point clouds composed of multibeam sonar data is pre-
sented. This allows accurate initialization for point cloud alignment
techniques even in cases where accurate inertial navigation is
not available, such as iceberg profiling or vehicles with low-
grade inertial navigation systems. Techniques from computer vision
literature are used to extract, label, and match keypoints be-
tween “pseudo-images” generated from these point clouds. Image
matches are refined using RANSAC and information about the
vehicle trajectory. The resulting correspondences can be used to
initialize an iterative closest point (ICP) registration algorithm to
estimate accumulated navigation error and aid in the creation of
accurate, self-consistent maps.

The results presented use multibeam sonar data obtained from
multiple overlapping passes of an underwater canyon in Monterey
Bay, California. Using strict matching criteria, the method detects
23 between-swath correspondence events in a set of 155 pseudo-
images with zero false positives. Using less conservative matching
criteria doubles the number of matches but introduces several
false positive matches as well. Heuristics based on known vehicle
trajectory information are used to eliminate these.

I. INTRODUCTION

The work presented in this paper develops an algorithm for data
correspondence detection within point clouds created from sonar
measurements, and applies it to field data. This correspondence
information can be used to correlate measurements and estimate
navigation drift as part of a loop closure process – an impor-
tant step for generating accurate terrain maps. If the vehicle
has relatively precise inertial navigation, the need to detect
correspondences can be avoided. However, when navigational
drift becomes very large, a robust means for detecting loop
closure events and solving the correspondence problem becomes
necessary.

A number of methods have been developed to solve the loop
closure problem. Some of these involve correlating a set of
measurements with another set [1], either in the form of a
point cloud or a 2.5 dimensional Digital Elevation Map (DEM).
However, searching for correlation peaks in such data can
be computationally expensive. Iterative Closest Point (ICP)
methods [2] are an efficient set of algorithms capable of high-
accuracy point cloud alignment. Given a reasonably good initial
alignment estimate, ICP algorithms do not require a priori
correspondence knowledge, but can become trapped in local
minima if initialized too far from the truth [3]. For robotic

applications with large sensor drift, and where GPS or other
navigational infrastructure is not available, it can be difficult
to provide ICP registration methods with an initial condition
that is certain to converge to an accurate result. Previous work
has attempted to address this ICP initialization problem by
extracting distinctive keypoints from the 3D data [4], [5] or
other histogram-based approaches to describing point cloud
structure [6], [7]. These perform well for recognizing man-made
objects, with distinctive features, in cluttered environments.
Initial attempts by the authors to apply these techniques to
underwater natural terrain did not produce robust matching,
though further work to adapt them may yield improved results.

The method presented here seeks to solve the loop closure
problem for underwater natural terrain by providing an accurate
initialization for ICP methods. It does not rely on having an
accurate position estimate to establish correspondence. Instead,
it identifies similarities between the measurements themselves to
determine that the terrain has been observed before. Borrowing
from the computer vision literature, image feature extraction,
description, and matching techniques normally performed on
2-D images are applied to 3-D point clouds constructed from
multibeam sonar measurements. Recent work by Leines [8]
applied image feature matching to point clouds of lidar mea-
surements. The work converted raw point clouds of a mixture
of urban and natural terrain to 2.5-D DEMs. This paper uses a
similar approach to find correspondences in data sets devoid of
artificial landmarks, and lacking a well-defined reference plane
– a phenomenon that occurs when mapping environments such
as an iceberg or undersea canyon.

The initial motivation for this work is a NASA ASTEP-funded
mission to map free-drifting icebergs as part of a larger goal
of exploring and searching for life in extreme environments.
The icebergs’ motion introduces large apparent odometry errors,
which complicate the process of loop closure. In addition to this
specific application, the method developed herein can also be
applied to any mapping task where the vehicle has low-quality
inertial navigation, whether due to DVL (Doppler Velocity
Logger) signal dropout, low-quality or corrupted sensors, or
inertial drift accumulated over long-duration missions. Section
II describes the steps of the algorithm, and Section III shows
experimental results. The dataset consists of multibeam sonar
readings of an underwater canyon wall in Monterey Bay, Cal-
ifornia. The measurements were collected on multiple passes



around the canyon. Correspondence detection is first applied to
overlapping point cloud submaps for validation, and then used
to match point cloud submaps between successive passes around
the canyon.

II. TECHNICAL APPROACH

A. Overview

The goal of this work is to solve the data correspondence
problem for point clouds composed of multibeam sonar returns,
without the need for accurate odometry. These correspondences
can then be used to initialize registration algorithms that might
otherwise fail due to local minima, enabling the creation of
underwater terrain maps even when accurate navigation is not
available. At a high level, the method, outlined in Figure 1,
detects recognizable “landmarks” in sonar data, in order to
identify when the vehicle revisits previously-traversed terrain.
The procedure consists of four steps:

Image Generation: To begin, the point cloud is divided into
overlapping submaps. Each individual submap is converted into
a DEM image by projecting the points onto an average normal
plane. Gaps within the data are filled using Gaussian smoothing,
and image contrast is enhanced.

Feature Extraction: SIFT features are extracted from the DEM
image using the method described by Lowe in [9].

Image Matching: SIFT features are compared between images,
and Random Sample Consensus (RANSAC) with a homo-
graphic projection model is used to enforce geometric consis-
tency to avoid false or ambiguous matches.

False Match Rejection: Application-specific knowledge can be
leveraged to serve as an additional method to eliminate false
matches. In some cases, in low-information natural terrain, even
with the feature-level outlier rejection methods described above,
the algorithm can generate false matches. For the application
considered in this paper, mapping of free-drifting iceberg keels
or underwater canyons, an additional outlier rejection heuristic
can be performed, based on the assumption that matching
image pairs should appear consecutively. This follows directly
from the robot’s trajectory through the cyclic environment. A
Hough transform [10] is used to find the predominant match
sequence, and flag all other matches as outliers. This allows
the matching threshold to be set less conservatively, producing
more matches without introducing incorrect information into the
mapping process.

These steps are described in more detail in Sections II-B through
II-E.

B. Image Generation

To leverage image processing tools for point cloud correspon-
dence detection, the point cloud must first be converted into
an image. The resulting grayscale images can be thought of as
DEMs with pixel intensity being the “height” of the map above
that location in the image.

Fig. 1. Correspondences between point clouds are determined in four primary
stages, some of which can be decomposed into smaller processes.

There are several steps in creating an image. First, a reference
plane and corresponding projection direction is chosen. Next,
a grid is constructed on the reference plane, and the distance
between a measurement and its projection onto that plane
is recorded as the “intensity” at the respective location. For
instance, when creating a DEM of the seafloor, the reference

2



plane is horizontal (x, y), and the projection direction is vertical
(z). However, operating in a high-curvature environment such
as icebergs or canyon walls, there may not be a single, clearly
defined direction in which the projection should occur.

The method presented here calculates the average normal for
a given submap and uses that as its projection direction.
The reference plane is set perpendicular to this, such that all
measurements lie on the positive-z side of the plane. For two
partially overlapping submaps, the reference planes can have
slightly different orientations.

Since image features are based on intensity gradients, and
different projection planes will alter the intensity gradients
within the image, the size of a submap must be chosen to
minimize effects due to changes in projection direction. For
small angles, the gradients are only offset by a small constant
and minor scaling changes; a slight tilt in the image projection
plane is comparable to a minor change in lighting angle in a
standard image. Since SIFT features are known to be robust to
lighting changes up to approximately 20 degrees [11], submap
sizes should be designed such that the expected orientation
change between consecutive images is less than this amount.

When applied to the sonar submap shown in Figure 2, data
projection yields the image shown in Figure 3. Where multiple
soundings project to the same pixel, the average pixel height is
used in the final image. At this step, the data is also resampled
on a rectangular pixel grid. As shown in the latter figure, sonar
occlusions result in a number of holes or gaps in the data.

The gaps in the data are filled by a process equivalent to bilinear
interpolation, in order to prevent the feature extraction algorithm
from interpreting them as valid information. A mask is used
to prevent features from being detected within the unobserved
regions, but since the algorithm uses pixel neighborhoods to
detect and describe features, the gaps must be smoothed in.
The fundamental assumption behind smoothing is that the sonar
returns are the result of reflecting sound energy off of an
underlying physical surface, implying that nearby measurements
will be correlated. To reflect this, this algorithm smooths the
transition to the unobserved regions using an iterative procedure
of eroding the full image and then restoring the known pixels
to their original values. The pixels lacking data are initialized
with an intensity of zero. The image is then convolved with a
Gaussian kernel, acting as a low-pass filter, effectively smearing
the image and filling in some of the gaps. The second step
restores the pixels that began with valid data to their original
values. The result is equivalent to bilinear interpolation in pixel
space, but requires less bookkeeping. The result of this process
can be seen in Figure 4.

The last step in creating a SIFT-ready image is Contrast-Limited
Adaptive Histogram Equalization (CLAHE), shown in Figure
5. Algorithms like SIFT use gradient information in images
to extract features. The CLAHE process attempts to enhance
details without skewing the overall image contrast level [12].

Fig. 2. A submap consists of approximately 180,000 sonar measurements. 600
scans, taken over 200 seconds were collated to generate this submap spanning
300m of terrain.

Fig. 3. The data shown in Figure 2 is converted into an image by projecting
each point onto an average normal plane. Any gaps in the data are shown as
red hatches.

Fig. 4. After the erode-restore process, the (red hatched) gaps highlighted in
Figure 3 are smoothed out. Note that the original data measurements remain
unchanged.
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Fig. 5. Adaptive Histogram Equalization on Figure 4 boosts the contrast of the
image, increasing the number of detected SIFT features.

C. Feature Extraction

After the 3D data is converted into DEM format, robust image
features are extracted and used to look for loop closure events.
Features located in regions with no data measurements are
discarded. The work presented here employs SIFT features,
though other feature classes can be used. Figure 6 shows
features extracted from such an image.

Fig. 6. A random sample of SIFT features extracted from the range image in
Figure 5. Only features occurring in regions of original data are considered for
matching.

D. Image Matching

To find correspondences between two datasets, each image from
the second dataset is compared to each image from the first
dataset, using the standard matching algorithm proposed by
Lowe [9]. Two image features are considered a good match if
the Euclidean distance between their descriptors is 1.5 times less
than the next best feature match. Next, further spurious feature
matches are eliminated using RANSAC with a homographic
projection model. If RANSAC finds a valid transformation
model between the two images with a sufficient number of
additional inliers, the pair is labeled a mach. The required
number of inliers is determined by a user-specified threshold,

and constitutes a trade-off between detecting a large number of
matches with moderate confidence or a small number of matches
with high confidence, essentially moving the solution along a
receiver operating characteristic curve. If two images from the
first dataset have the same number of RANSAC inliers with a
given image from the second dataset, the match with the lowest
feature reprojection error is selected. Example results are shown
in Figure 7.

E. Application-specific False-Match Rejection

The image matching of Section II-D leads to images being
paired with their most likely counterpart from another instance
during the mission. However, if false matches are a concern for
the particular algorithm use case, then a strategy for false match
rejection should be employed.

Application-specific knowledge can be used to perform false
match detection and elimination. For the motivating application
used in this paper, mapping free-drifting icebergs and under-
water canyons, it is assumed that the vehicle moves at near
constant velocity during data collection, and that a repeated pass
of the same terrain should result in a sequence of corresponding
images. If an image matches one from an earlier time in the
mission, it is very likely that the next image during a pass
will match the next image in the following pass. Under these
assumptions, plotting the best matching image numbers from
one pass against the other should yield a straight line.

In this paper, a Hough transform [10] is used to estimate
the parameters of the predominant line through the image
matches. Line parameters (slope and intercept) are estimated
using every possible pairwise combination of datapoints and
placed into discretized bins. The most populated bin is selected
and these parameters represent the best linear trend of the data.
Image matches that fall within a threshold distance of the line
are retained, and considered inliers, whereas matches that fall
outside this limit are discarded as outliers.

The final image matches output from the algorithm can be
referenced back to their original point cloud data, and the
resulting relative offsets can be utilized to initialize an ICP
algorithm.

III. EXPERIMENTAL RESULTS

The dataset used for these experiments was collected using a
multibeam sonar on board an Autonomous Underwater Vehicle
(AUV) in Soquel Canyon, Monterey Bay, California. The vehi-
cle circumnavigated the canyon two and a half times, measuring
ranges to the walls. The first set of experiments searches for
correspondences between sequential pseudo-images with known
overlap, in order to validate the matching technique. The second
set then searches for correspondences between different passes
along the canyon.

Each image was created using point cloud submaps of approx-
imately 180,000 data points. The multibeam sonar collects a
line-scan measurement of 300 points at a rate of 3Hz, and the
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Fig. 7. SIFT feature matches between two successive passes along the Soquel Canyon wall. The features are shown as yellow circles and matching features are
connected in red. Not all features are registered across both images but there are sufficient correspondences to declare an image match.

vehicle has an estimated velocity of 1.5 meters per second. The
resulting images typically cover a 200 meter wide swath with a
length of 300 meters (lengths are approximate due to variations
in the terrain). Designed to have 75% overlap with its immediate
neighbors, each image shares data points with up to three other
images in either direction of travel. Overall, the entire dataset
has been segmented into 406 images.

Experiments were run using two different thresholds for the
number of post-RANSAC feature matches required for an image
match. Each image contains between 70 and 120 SIFT features.
For the higher RANSAC inlier threshold, two images are
considered a match if the homography produced by RANSAC
has at least 15 inliers. This yields a small number of high-
quality matches with no false positives, but fails to detect some
good matches in areas with fewer features. In order to detect
these additional matches, a lower RANSAC inlier threshold is
required. Using a RANSAC inlier threshold of 7 doubles the
number of matches detected, but also detects some false positive
matches. However, this can be mitigated using an application-
specific outlier rejection method based on the Hough Transform.

Outlier rejection is then performed by using a Hough transform
to find the predominant line through the image matches. Every
pair of image matches is used to vote for line parameters. The
bin with the most votes is identified, and linear regression is
performed on the match pairs that contributed to this bin. Due
to the 75% overlap between adjacent images, the resulting line
is considered to be the center of the correct match, and all
image matches within a distance of 3 from the resulting line
are considered to be “good” matches.

A. Matching Overlapping Data

The technique is first validated on images with guaranteed
overlap. For this test, all even-numbered images were compared
to every odd-numbered image in the dataset. Given the 75%
overlap between adjacent images, a match was considered

correct if the algorithm identified a match between the ith even
image and the (i− 1)th, ith, (i+ 1)th, or (i+ 2)th odd image.

Figure 8 shows results using the high RANSAC inlier threshold
of 15 image feature matches. All but two of the matches
correspond to a pair of overlapping submaps; the two matches
that deviate from this line are in fact the same canyon location,
matched between passes 1 & 3, and passes 2 & 3 respectively.
Therefore, the algorithm is able to identify 132 matching images
with no false positives. Lowering the RANSAC inlier threshold
from 15 to 7 generates 23 additional image matches, resulting
in 155 matching images with no false positives. Low RANSAC
inlier threshold results are shown in Figure 9.

The images for which no correspondences are found occur
in smooth, featureless terrain, with a distinct lack of easily
identifiable features. These results show that for the given
dataset, there is sufficient terrain texture for image matching,
and that for the given image generation parameters, the variation
in projection plane orientation is small enough to allow for
accurate image matching.

B. Matching Multi-Pass Data

Next, the image matching algorithm is applied to longer-
duration data collection passes over the same region. In this
case, the 155 images of the first pass around the canyon are
compared to 156 images from the second pass around the
canyon. To generate truth, all images from the second pass
were visually inspected and hand-labeled with the indices of
all partially-overlapping images from the first pass.

Figure 10 shows results using a RANSAC inlier threshold of
15. The green shaded region denotes regions of true image
overlap. The algorithm identified 23 correspondences, with no
false positives. When there is a sufficiently high RANSAC inlier
threshold for image matches, outlier rejection has no impact
upon the accuracy of the results.
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Fig. 8. Comparison of odd-numbered images with even-numbered images for
a RANSAC inlier threshold of 15. This results in 132 matching images with no
false positives. The two points that deviate from the predominant line are correct
matches between images of the same canyon region, collected on different
passes.

Fig. 9. Comparison of odd-numbered images with even-numbered images for
a RANSAC inlier threshold of 7. This results in 155 matching images with no
false positives. The two points that deviate from the predominant line are correct
matches between images of the same canyon region, collected on different
passes.

Lowering the RANSAC inlier threshold introduces additional
true correspondences, as well as four false positives. Results for
a RANSAC inlier threshold of 7 are shown in Figure 11. Inlier
matches are plotted as solid circles, and outliers are plotted as
hollow circles, with the Hough line of best fit shown in green.
There are a total of 49 image matches prior to outlier rejection,
45 of which are correct. Outlier rejection correctly identifies
the inaccurate image matches, retaining the 45 matches with
no false positives. By lowering the RANSAC inlier threshold
and applying application-specific outlier rejection, the number
of detected correspondences is doubled.

IV. CONCLUSIONS

Experiments on the Soquel Canyon dataset show that the
algorithm presented here is able to identify correct correspon-
dences between sets of point clouds. The ability to detect
correspondences in range data taken from natural terrain allows

Fig. 10. Results of matching multi-pass imagery with a RANSAC inlier
threshold of 15. The green shaded region denotes regions of true image overlap.
Since there are no false positives, Hough transform outlier rejection has no
impact upon the results.

Fig. 11. Results of matching multi-pass imagery with a RANSAC inlier
threshold of 7. The lower threshold allowed more good matches to be detected
(solid circles), but also produced some false matches (hollow circles). These
false matches were rejected using a Hough Transform, which gives a line-of-
best-fit (green).

loop closure detection even after the accumulation of large
navigational drift, which is valuable for iceberg profiling and
mapping of static terrain using vehicles with low-precision
inertial navigation systems.

Using strict matching criteria, the method identifies no false
matches, but at the cost of rejecting a number of good matches.
Using less conservative matching criteria doubles the number of
matches but introduces several false positive matches as well.
Heuristics based on known vehicle trajectory information are
used to eliminate these.

Once image correspondences are correctly identified, the infor-
mation can be used to accurately initialize an ICP algorithm for
the purpose of estimating accumulated navigational drift.
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