Aura OMI observations of global SO$_2$ and NO$_2$ pollution from 2005 to 2013

Nickolay Krotkov1, Can Li 1,2, Lok Lamsal1,3, Edward Celarier1,3, Sergey Marchenko4, William H. Swartz5, Eric Bucsela6, Vitali Fioletov7, Chris McLinden7, Joanna Joiner1, Pawan K. Bhartia1, Bryan Duncan1, Russ Dickerson8

1NASA Goddard Space Flight Center, 2ESSIC, University of Maryland College Park, 3GESTAR, University Space Research Association, 4Science Systems and Applications, Inc., 5Applied Physics Laboratory, John Hopkins University, 6SRI International, 7Environment Canada, Ontario CA, 8Department of Atmospheric and Oceanic Science, University of Maryland College Park

Aura STM College Park, MD
18 September 2014
Key improvements in OMI NO$_2$ and SO$_2$

- **Significant improvements in retrieval quality** –
 - Improved spectral fitting of OMI NO$_2$ removes 20%-40% of the stratospheric biases with other satellite measurements. **New NO$_2$ version planned for release next year**
 - New PCA SO$_2$ algorithm uses full spectral content from OMI, reduces noise by half and removes biases (artifacts)
 - **New Version 2 OMI SO$_2$ dataset will be released this fall**

- **Maximal data continuity between instruments** –
 - Both OMI NO$_2$ and SO$_2$ algorithms can benefit new missions: SNPP/OMPS, TROPOMI, GEMS and TEMPO
 - no need to develop instrument-specific radiance data correction schemes

- **Maximal sensitivity** -
 - PCA SO$_2$ detection limit for point sources is half the current PBL algorithm

- **Flexibility** –
 - PCA SO$_2$ fitting window can be easily adjusted to optimize sensitivity under different conditions: from small anthropogenic signals to largest volcanic plumes.
 - NO$_2$ fitting window can be expanded to UV wavelengths (OMPS)
Regional trends in OMI new SO$_2$ and NO$_2$: 2005-2013
OMI SO\textsubscript{2} and NO\textsubscript{2} time series

• SZA < 70\textdegree
• Cross-track CCD rows 6-23 (excluding row anomaly for all years) ;
• Snow-free observations (according to the IMS data* product);
• SCD-O\textsubscript{3}<1500 DU, VCD_SO\textsubscript{2}<15 DU
• Additional volcanic filtering: all days removed which, over that region and considering all years, had a daily 99.9th percentile value greater than X,
 – where X=5 DU for Eastern North America,
 8 DU for Eastern Europe and India,
 10 DU for China –
these thresholds are obtained using the 99.9 percentile daily regional time series.
For consistency removed the same volcanic days in NO\textsubscript{2} product

SO₂

NO₂

Eastern US

Graphs showing the changes in SO₂ and NO₂ concentrations from 2005 to 2013. The graphs display the concentration levels of SO₂ and NO₂ (in DU) over the years, with a map of the Eastern US in the background.

Change in SO₂ [%]

Change in trop. NO₂ [%]
Eastern Europe

2005-2007

SO₂

2011-2013

Maritsa Iztok (Bulgaria)

Etna Volcano
Eastern Europe: Time series for Maritsa Iztok

SO\(_2\) and NO\(_2\) levels and changes from 2005 to 2013.
India

2005-2007

SO₂

2011-2013

Pronunciation: chuht-tihs-guhr

Chhattisgarh

Power plants / smelter

Vertical Column Density [DU]
India

2005-2007

2011-2013

NO₂

Chhattisgarh

Power plants / smelter

Pronunciation: chuht-tihs-guhr

Vertical Column Density [10^{15} \text{ cm}^{-2}]

NO₂

Chhattisgarh

Vertical Column Density [10^{15} \text{ cm}^{-2}]

Chnage in trop. NO₂ [%]

Year

2005 2006 2007 2008 2009 2010 2011 2012 2013

0

10

20

30

40

Year

Chnage in trop. NO₂ [%]
Time series: India (Chhattisgarh)

SO₂

NO₂

Trop. NO₂ [DU]

Change in SO₂ [%]

Change in trop. NO₂ [%]

Year
Eastern China: Time series

SO$_2$

Year
2005 2006 2007 2008 2009 2010 2011 2012 2013
SO$_2$ [DU]

NO$_2$

Trop. NO$_2$ [DU]

Change in SO$_2$ [%]

Change in trop. NO$_2$ [%]
Summary

Eastern USA

- **SO\(_2\) (Ohio Valley)**
- **NO\(_2\) (NY-NJ-PHI-BAL)**

Eastern Europe (Maritsa Iztok, Bulgaria)

India (Chhattisgarh)

Eastern Asia (Eastern China)