Introduction to Adjoint Models

Ronald M. Errico

Goddard Earth Sciences Technology And Research, Morgan State University
Global Modeling and Assimilation Office, NASA Goddard Space Flight Center
Outline

1. Sensitivity analysis
2. Examples of adjoint-derived sensitivity
3. Development of adjoint model software
4. Validation of an adjoint model
5. Use in optimization problems
6. Misunderstandings
7. Summary
8. References
Sensitivity Analysis:
The basis for adjoint model applications

Adjoint in simple terms
Adjoint Sensitivity Analysis for a Discrete Model

The Problem to Consider:

A possibly nonlinear model:

\[y = m(x) \] \hspace{1cm} (1)

A differentiable scalar measure of model output fields:

\[J = J(y) \] \hspace{1cm} (2)

The result of input perturbations

\[\Delta J = J(x + x') - J(x) \] \hspace{1cm} (3)

A 1st–order Taylor series approximation to \(\Delta J \)

\[J' = \sum_{i} \frac{\partial J}{\partial x_i} x'_i \] \hspace{1cm} (4)

The goal is to efficiently determine \(\frac{\partial J}{\partial x_i} \) for all \(i \)
Adjoint Sensitivity Analysis for a Discrete Model

The Tangent Linear Model (TLM)

Apply a 1st–order Taylor series to approximate the model output

\[y'_i = \sum_j \frac{\partial y_i}{\partial x_j} x'_j \]

\(\partial y_i / \partial x_j \) is called either the Resolvant matrix of the TLM or the Jacobian of the nonlinear model.

Approximate \(\Delta J \) by a 1st–order Taylor series in \(y' \)

\[J' = \sum_i \frac{\partial J}{\partial y_i} y'_i \]
A graphical TLM schematic
Adjoint Sensitivity Analysis for a Discrete Model

The Adjoint Model

(Adjoint of the TLM or adjoint of the nonlinear model)

Application of the “chain rule” yields

\[
\frac{\partial J}{\partial x_i} = \sum_j \frac{\partial y_j}{\partial x_i} \frac{\partial J}{\partial y_j}
\] \hspace{1cm} (9)

Contrast with the TLM

\[
y'_i = \sum_j \frac{\partial y_i}{\partial x_j} x'_j
\] \hspace{1cm} (10)

A. The variables are different in the two equations
B. The order of applications of the variables related to \(x\) and \(y\) differ
C. The indices \(i\) and \(j\) in the matrix operator are reversed
Adjoint Sensitivity Analysis
Impacts vs. Sensitivities

A single impact study yields exact response measures \((J)\) for **all** forecast aspects with respect to the **particular** perturbation investigated.

\[
\Delta J = J(y + y') - J(y)
\]

A single adjoint-derived sensitivity yields linearized estimates of the **particular** measure \((J)\) investigated with respect to **all** possible perturbations.

\[
J' = \sum_i \frac{\partial J}{\partial x_i} x'_i
\]
Adjoint Sensitivity Analysis for a Discrete Model

Additional Notes

1. Mathematically, the field $\partial J/\partial x$ is said to reside in the dual space of x.

2. With the change of notation $\hat{x} = \partial J/\partial x$, $M = \partial y/\partial x$, etc.,

$$J' = \hat{y}^T y' = \hat{y}^T (Mx') = (\hat{y}^T M)x' = (M^T \hat{y})^T x' = \hat{x}^T x' \quad (11)$$

3. The exact definition of the the adjoint depends on the quadratic expression used to define J'. If the simple Euclidean norm (or dot product) is used, then for a discrete model, the adjoint is simply a transpose. Such a simple norm may not be appropriate when the dual space fields are to be physical interpreted. (More on this later.)

4. The adjoint is not generally the inverse: in non-trivial atmospheric models, $M^T \neq M^{-1}$.

5. This is all 1st–year calculus and linear algebra. If examination of gradients is useful, then so are the adjoint models used to calculate them.
Adjoint Sensitivity Analysis for a Discrete Model

Example Equations

Nonlinear model:

\[
\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x}
\]

Discrete NLM (superscript \(t\) index, subscript \(x\) index)

\[
\begin{align*}
 u_{i}^{n+1} &= u_{i}^{n} - (\Delta t)u_{i}^{n} \frac{u_{i+1}^{n} - u_{i-1}^{n}}{2(\Delta x)}
\end{align*}
\]

TLM (linearized about time and space varying solution \(\tilde{u}\))

\[
\begin{align*}
 u_{i}^{n+1} &= u_{i}^{n} - \frac{\Delta t}{2\Delta x} \left[u_{i}^{n} (\tilde{u}_{i+1}^{n} - \tilde{u}_{i-1}^{n}) + \tilde{u}_{i}^{n} (u_{i+1}^{n} - u_{i-1}^{n}) \right]
\end{align*}
\]

Adjoint model:

\[
\begin{align*}
 \hat{u}_{i}^{n} &= \hat{u}_{i}^{n+1} - \frac{(\Delta t)}{2(\Delta x)} \left[(\tilde{u}_{i+1}^{n} - \tilde{u}_{i-1}^{n})\hat{u}_{i}^{n+1} + \tilde{u}_{i}^{n} \hat{u}_{i-1}^{n+1} - \tilde{u}_{i+1}^{n} \hat{u}_{i+1}^{n+1} \right]
\end{align*}
\]
Although the previous description of an adjoint for a discrete model is correct, it fails to adequately account for some issues regarding the discrete representation of physically continuous fields.

As long as the interpretations of sensitivity concern the given model and resolution or the applications of gradients concern some classes of optimization problems, this “failure” does not apply.
Examples of Adjoint-Derived Sensitivities
Example Sensitivity Field

Errico and Vukicevic 1992 MWR

Contour interval 0.02 Pa/m M=0.1 Pa/m
Lewis et al. 2001

\[\frac{\partial qv}{\partial T_s}(t = -48 \text{ h}) \]

\[\frac{\partial qv}{\partial q}(\sigma = .86, \ t = -48 \text{ h}) \]
Sensitivity field for $J=p_s$ with respect to T for an idealized cyclone

From Langland and Errico 1996 *MWR*
Development of Adjoint Model Software

First consider deriving the TLM and its adjoint model codes directly from the NLM code
1. Eventually, a TLM and adjoint code will be necessary.

2. The code itself is the most accurate description of the model algorithm.

3. If the model algorithm creates different dynamics than the original equations being modeled, for most applications it is the former that are desirable and only the former that can be validated.

Why consider development from code?
Development of Adjoint Model From Line by Line Analysis of Computer Code

Automatic Differentiation

TAMC Ralf Giering (superceded by TAF)
TAF FastOpt.com
ADIFOR Rice University
TAPENADE INRIA, Nice
OPENAD Argonne
Others www.autodiff.org
1. TLM and Adjoint models are straight-forward (although tedious) to derive from NLM code, and actually simpler to develop.
2. Intelligent approximations can be made to improve efficiency.
3. TLM and (especially) Adjoint codes are simple to test rigorously.
4. Some outstanding errors and problems in the NLM are typically revealed when the TLM and Adjoint are developed from it.
5. Some approximations to the NLM physics considered are generally necessary.
6. It is best to start from clean NLM code.
7. The TLM and Adjoint can be formally correct but useless!
Nonlinear Validation

Does the TLM or Adjoint model tell us anything about the behavior of meaningful perturbations in the nonlinear model that may be of interest?
Linear vs. Nonlinear Results in Moist Model

24-hour SV1 from case W1
Initialized with T’=1K
Final ps field shown

Contour interval 0.5 hPa

Errico and Raeder 1999 QJRMS
Linear vs. Nonlinear Results in Moist Model

(a) Non-Conv Precip. ci=0.5mm
(b) Non-Conv Precip. ci=0.5mm
(c) Convective Precip. ci=2mm
(d) Convective Precip. ci=2mm
Linear vs. Nonlinear Results

In general, agreement between TLM and NLM results will depend on:

1. Amplitude of perturbations
2. Stability properties of the reference state
3. Structure of perturbations
4. Physics involved
5. Time period over which perturbation evolves
6. Measure of agreement

The agreement of the TLM and NLM is exactly that of the Adjoint and NLM if the Adjoint is exact with respect to the TLM.
Problems with Physics

1. The model may be non-differentiable.
2. Unrealistic discontinuities should be smoothed after reconsideration of the physics being parameterized.
3. Perhaps worse than discontinuities are numerical instabilities that can be created from physics linearization.
4. It is possible to test the suitability of physics components for adjoint development before constructing the adjoint.
5. Development of an adjoint provides a fresh and complementary look at parameterization schemes.
Efficient solution of optimization problems
Optimal Perturbations

Type I

Maximize

\[J' = \sum_i \frac{\partial J}{\partial x_i} x_i' \]

Given the constraint:

\[C = \frac{1}{2} \sum_i w_i x_i'^2 \]

Solution Method: Minimize the augmented variable

\[I = \sum_i \frac{\partial J}{\partial x_i} x_i' + \lambda \left(C - \frac{1}{2} \sum_i w_i x_i'^2 \right) \]

\[\frac{\partial I}{\partial x_i'} = \frac{\partial J}{\partial x_i} - \lambda w_i x_i' \]

Solution:

\[x_i' \text{(optimal)} = \frac{\lambda}{w_i} \frac{\partial J}{\partial x_i} \]

\[\lambda = \sqrt{2C} \left[\sum_i \frac{1}{w_i} \left(\frac{\partial J}{\partial x_i} \right)^2 \right]^{-1} \]
Optimal Perturbations
Type II

Minimize

\[C = \frac{1}{2} \sum_i w_i x_i'^2 \]

Given the constraint:

\[J' = \sum_i \frac{\partial J}{\partial x_i} x_i' \]

Solution Method (as before)

Solution:

\[x_i'(\text{optimal}) = \frac{\lambda}{w_i} \frac{\partial J}{\partial x_i} \]

\[\lambda = J' \left[\sum_i \frac{1}{w_i} \left(\frac{\partial J}{\partial x_i} \right)^2 \right]^{-1} \]
Maximize the L2 norm:
\[N = \frac{1}{2} y'^T N y' \] \hspace{1cm} (40)

Given the TLM:
\[y' = M x' \] \hspace{1cm} (41)

And the constraint:
\[1 = C = \frac{1}{2} x'^T C x' \] \hspace{1cm} (42)

Solution Method: Minimize the augmented variable \(I(x') \):

\[I = \frac{1}{2} x'^T M^T N M x' + \lambda^2 \left(C - \frac{1}{2} x'^T C x' \right) \] \hspace{1cm} (43)

\[\frac{\partial I}{\partial x'} = M^T N M x' - \lambda^2 C x' \] \hspace{1cm} (44)

For \(z = C^{\frac{1}{2}} x' \), the solution is an eigenvalue problem

\[\lambda^2 z = C^{-\frac{1}{2}} M^T N M C^{-\frac{1}{2}} z \] \hspace{1cm} (45)
Optimal Perturbations
Additional Notes Regarding SVs

1. λ are the **singular values** of the matrix $N^{1/2}MC^{-1/2}$.

2. The set of x' form an orthonormal basis with respect to the norm C.

3. If C and N are the Euclidean norm I, then $x' = z$ are the right (or initial) **singular vectors** (or SVs) of M and $y' = Mx'$ are the left (or final or evolved) singular vectors of M. *The same terminology is used even for more general norms.*

4. $\lambda^2 = N/C$ for each solution.

5. If C is the inverse of the error covariance matrix, then the evolved SVs are the EOFs (or PCs) of the forecast error covariance, and truncations using the leading SVs maximize the retained error variance. (Ehrendorfer and Tribbia 1997 *JAS*)

6. The SVs and λ^2 depend on the norms used; i.e., on how measurements are made. This dependency is removed only by introducing some other constraint or condition.

7. SVs produced for semi-infinite periods are equivalent to Lyupanov vectors (Legras and Vautard, 1995 *ECMWF Note*).
The more general nonlinear optimization problem

Find the local minima of a scalar nonlinear function $J(x)$.

$\frac{\partial J}{\partial x}$

Gradient at point P

Contours of J in phase (x) space

P

M
The Energy Norm

\[E = \frac{1}{2A} \int \left[u'² + v'² + \frac{C_p}{T_r} T'² + \frac{R T_r}{p_{sr}²} p'_s² \right] \, dA \, d\sigma \]

Problems with Physics
Tangent linear vs. nonlinear model solutions

Errico and Raeder 1999
QJRMS
Problems with Physics
Parameterization of Vertical Eddy Diffusion

NLM:
\[
\frac{\partial u}{\partial t} = \ldots + \frac{1}{\rho} \frac{\partial}{\partial z} \rho K \frac{\partial u}{\partial z}
\]

The \(K \) are flow–dependent eddy diffusion coefficients.

TLM:
\[
\frac{\partial u'}{\partial t} = \ldots + \frac{1}{\tilde{\rho}} \frac{\partial}{\partial z} \tilde{\rho} \tilde{K} \frac{\partial u'}{\partial z} + \frac{1}{\tilde{\rho}} \frac{\partial}{\partial z} \tilde{\rho} K' \frac{\partial u}{\partial z} + \text{terms for } \rho'
\]

Usually a semi–implicit treatment of \(\partial u/\partial z \) is used to greatly increase numerical stability. This appear to work in the NLM but is insufficient in the TLM.

Instead, the \(K' \) term is generally ignored!
Problems with Physics

Consider Parameterization of Stratiform Precipitation

\[R \]

\[q \]

Modified NLM

NLM

TLM
Example of a potentially worse problem introduced by smoothing
Problems with Physics

1. The model may be non-differentiable.
2. Unrealistic discontinuities should be smoothed after reconsideration of the physics being parameterized.
3. Perhaps worse than discontinuities are numerical instabilities that can be created from physics linearization.
4. It is possible to test the suitability of physics components for adjoint development before constructing the adjoint.
5. Development of an adjoint provides a fresh and complementary look at parameterization schemes.
Other Important Considerations

Physically-based norms and the interpretations of sensitivity fields
\[\partial (\text{error "energy")} / \partial (\text{Tv 24-hours earlier}) \]

1 x 1.25 degree lat-lon

0.5 x 0.0625 degree lat-lon

From R. Todling
Sensitivities of continuous fields

Consider \(J(f(x)) \) where \(J \) is a scalar function of a set \(f_i \) of continuous fields represented by the vector \(f \), each defined within a multi-dimensional space \(x \). Then, the real functional expression

\[
\delta J = \langle \frac{\partial J}{\partial f}, \delta f \rangle
\]

should be interpreted as

\[
\sum_i \int_S dS(x) \frac{\partial J}{\partial f_i}(x) \delta f_i(x)
\]

where \(S \) is a volume, mass, or other metric. With this interpretation, \(\partial J/\partial f_i \) has physical units of \(J \times f_i^{-1} \times S^{-1} \); i.e., it is a kind of sensitivity density.

This field of sensitivity density is relatively independent of the grid on which it is represented, but to estimate the change of \(J \) due to a perturbation \(\delta f \) applied at grid point \(x_G \), the grid volume \(dS \) at this point must be considered; i.e.,

\[
\frac{\partial J}{\partial f_i}(x_G) = \int_{S(x_G)} dS(x) \frac{\partial J}{\partial f_i}(x)
\]

It is safer to base physical interpretations of sensitivity on its density, but then sensitivities to grid point perturbations become less obvious.
Sensitivity of J with respect to u 5 days earlier at 45°N, where J is the zonal mean of zonal wind within a narrow band centered on 10 hPa and 60°N. (From E. Novakovskaia)
Rescaling options for a vertical grid

Delta log p

Delta p

850 hPa

500 hPa

100 hPa

10 hPa

1 hPa
2 Re-scalings of the adjoint results

Mass weighting

Volume weighting

From E. Novakovskaia
Summary
Misunderstanding #1

False: Adjoint models are difficult to understand.

True: Understanding of adjoints of numerical models primarily requires concepts taught in early college mathematics.
Misunderstanding #2

False: Adjoint models are difficult to develop.

True: Adjoint models of dynamical cores are simpler to develop than their parent models, and almost trivial to check, but adjoints of model physics can pose difficult problems.
Misunderstanding #3

False: Automatic adjoint generators easily generate perfect and useful adjoint models.

True: Problems can be encountered with automatically generated adjoint codes that are inherent in the parent model. Do these problems also have a bad effect in the parent model?
False: An adjoint model is demonstrated useful and correct if it reproduces nonlinear results for ranges of very small perturbations.

True: To be truly useful, adjoint results must yield good approximations to sensitivities with respect to meaningfully large perturbations. This must be part of the validation process.
Misunderstanding #5

False: Adjoints are not needed because the EnKF is better than 4DVAR and adjoint results disagree with our notions of atmospheric behavior.

True: Adjoint models are more useful than just for 4DVAR. Their results are sometimes profound, but usually confirmable, thereby requiring new theories of atmospheric behavior. It is rare that we have a tool that can answer such important questions so directly!
What is happening and where are we headed?

1. There are several adjoint models now, with varying portions of physics and validation.
2. Utilization and development of adjoint models has been slow to expand, for a variety of reasons.
3. Adjoint models are powerful tools that are under-utilized.
4. Adjoint models are like gold veins waiting to be mined.
5. Validity of some effects remains questionable.
References

Papers by R. Gelaro, C. Reynolds, F. Rabier, M. Ehrendorfer, R. Langland, M. Leutbecher, D. Holdaway

Adjoint Workshop series:

8th http://gmao.gsfc.nasa.gov/events/adjoint_workshop-8/
9th http://gmao.gsfc.nasa.gov/events/adjoint_workshop-9/