Big Software for SmallSats: Adapting cFS to CubeSat Missions

Alan Cudmore, Gary Crum, Salman Sheikh, James Marshall
NASA Goddard Space Flight Center
[alan.p.cudmore, gary.a.crum, salman.i.sheikh, james.marshall-1]@nasa.gov
Outline

• Motivation
• What is cFS?
• Experience: CSP / CeREs
• Experience: Dellingr
• Performance
• Future Work
• References

• NOTE: All images courtesy of NASA
Motivation

- Expanding requirements
 - Science
 - Risk tolerance
 - This stresses software (and teams!)
- Budgets are not expanding
- “Small” Satellite does not mean “small” software
- Solution: a trusted framework with reusable components
cFS: core Flight Software

- NASA recognized a need to move away from “Clone and Own”
- Developed to tackle the very issues that SmallSats now face
- Framework and core services (cFE)
- Common set of applications and libraries
- (McComas, 2012) (Fesq, Dvorak, 2012)

“At Goddard the main driver for changing the development process is cost, [...] An obvious way to reduce cost and schedule is to increase the amount of software reuse.”

(Wilmot, 2006)

The cFS follows a product line approach with the goal to support systematic reuse.

(Ganesan, Lindvall, Ackermann, McComas, Bartholomew, 2009)
Framework and Core Services (cFE)

- Layered architecture
- Supports Publish / Subscribe Applications
- Events
- Tables
- Time

cFS Applications / Libraries
- CF
- CS
- DS
- FM
- HS
- HK
- LC
- MD
- MM
- SBN
- SC
- SCH

User Applications / Libraries
- ?

cFE Services
- Exec
- Event
- Bus
- Table
- Time

Operating System Abstraction Layer (OSAL)

Operating System (Linux, RTEMS, VxWorks, FreeRTOS)
Libraries and Applications

• Currently 12 Applications are available (http://cfs.gsfc.nasa.gov/)
• Optional, depends on mission needs.
• Easy to create
 – Sample application demonstrates messaging, events, and application loop
Heritage

- **cFE:**
 - Lunar Reconnaissance Orbiter
 - Living With a Star / Radiation Belt Storm Probes

- **cFS**
 - Global Precipitation Measurement
 - Magnetospheric MultiScale
 - Lunar Atmosphere and Dust Environment Explorer
CHREC Space Processor

- Space Test Program, Houston 5 / ISS SpaceCube Experiment Mini
- CHREC Space Processor Experiment
- NSF Center for High-Performance Reconfigurable Computing
- Presented here last year (Rudolph et al, 2014)
- Two CSPv1 in tandem
 - Xilinx Zynq 7020
 - Arm Dual Core Cortex A9 and Artix-7 FPGA
- Runs cFS!
- Launch 2016
cFS on the CHREC Space Processor

- Work spread over 3 employees
- Created 11 custom applications / libraries
- Code is in well defined applications
- Vary in level of reusability
- This is in addition to existing cFS functionality

<table>
<thead>
<tr>
<th>Mission Specific</th>
<th>Reusable</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSP Health</td>
<td></td>
</tr>
<tr>
<td>FTDP</td>
<td></td>
</tr>
<tr>
<td>Image Processing</td>
<td></td>
</tr>
<tr>
<td>Telemetry Out</td>
<td></td>
</tr>
<tr>
<td>Camera Control</td>
<td></td>
</tr>
<tr>
<td>Self Timer</td>
<td></td>
</tr>
<tr>
<td>Command Injest</td>
<td></td>
</tr>
<tr>
<td>Comm Library</td>
<td></td>
</tr>
<tr>
<td>File Transfer</td>
<td></td>
</tr>
<tr>
<td>FTDP Send</td>
<td></td>
</tr>
<tr>
<td>FTDP Receive</td>
<td></td>
</tr>
</tbody>
</table>
CeREs

• Compact Radiation Belt Explorer
• MERiT: Miniaturized Electron and pRoton Telescope
• Flight computer is a CSP
• cFS used for flight software
• (Kanekal, 2014)
Dellingr

- Hardware:
 - ARM7 processor (40 Mhz 2Mb RAM)
 - Reaction Wheels
 - Magnetorquers
 - Sensors (FSS)

- Science
 - INMS
 - Magnetometer
 - Thermal Louvre
Dellingr and cFS

• Work spread over three employees
• Ported OSAL to FreeRTOS
• Integrate with GomSpace software
• Custom
 – Hardware Library
 – Hardware telemetry
 – Radio
 – ACS
 – Science instruments
• Generated using David A. Wheeler’s 'SLOCCount'
Performance

- cFS imposes some performance costs
- Compared build with just FreeRTOS vs cFS
- Code available: https://github.com/jcmmarsh/cpek

<table>
<thead>
<tr>
<th></th>
<th>FreeRTOS</th>
<th>CFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dhrystone (per second)</td>
<td>11300.7</td>
<td>10576.4</td>
</tr>
<tr>
<td>WhetstoneDhrystone (KWIPs)</td>
<td>865.7</td>
<td>852.1</td>
</tr>
<tr>
<td>Hardware ping (per second)</td>
<td>757</td>
<td>621</td>
</tr>
</tbody>
</table>
Application Communication Costs

- cFS supports publish / subscribe message passing through the software bus.
- Adds functionality to FreeRTOS queues, increases overhead.
- Chart shows round trip messages passed between two applications.
Future Work

• 42 Simulator integration: http://fortytwospacecraftsimulation.sourceforge.net/
• cFS SDK
• Man Rated
Summary

• cFS is a mature framework
 – Strong heritage
 – Reduces personnel requirements
 – Available on a variety of platforms
 – Well suited to CubeSat missions

• Open Source (http://cfs.gsfc.nasa.gov/)

• Already being used on NASA CubeSats
References

