
Tangle-Free Finite Element Mesh Motion for Ablation

Problems

Justin Droba∗

NASA Johnson Space Center, Houston, TX, 77058, USA

JSC Engineering, Technology, and Science (JETS): Jacobs Technology and HX5, LLC

Mesh motion is the process by which a computational domain is updated in time to
reflect physical changes in the material the domain represents. Such a technique is needed
in the study of the thermal response of ablative materials, which erode when strong heating
is applied to the boundary. Traditionally, the thermal solver is coupled with a linear elastic
or biharmonic system whose sole purpose is to update mesh node locations in response
to altering boundary heating. Simple mesh motion algorithms rely on boundary surface
normals. In such schemes, evolution in time will eventually cause the mesh to intersect and
“tangle” with itself, causing failure. Furthermore, such schemes are greatly limited in the
problems geometries on which they will be successful. This paper presents a comprehen-
sive and sophisticated scheme that tailors the directions of motion based on context. By
choosing directions for each node smartly, the inevitable tangle can be completely avoided
and mesh motion on complex geometries can be modeled accurately.

I. Introduction

Problems involving mesh motion—which are not to be confused with moving mesh methods, a class of
adaptive mesh redistribution techniques designed to increase solution accuracy at low cost—arise naturally
in the study of the thermal response of ablative materials. Ablation is the process by which a surface erodes
by conversion of mass to another state of matter, most often from solid to gas (sublimination). While mass
is conserved when the entire system is considered, from the perspective of the solid, the mass loss is absolute:
no residue or accumulation is left, such as when a candle melts. Because the shape of the material changes
in time, so does the computational domain. This is the goal of mesh motion: independent of the thermal
solver, update the computational mesh to model its evolution in time.

A detailed discussion of the physics and modeling of ablation is beyond the scope of this paper. Instead, we
assume that the total mass loss ∆m is known. This quantity is related to the mass loss rate due to ablation
ṁ in the following manner:

∆m =

∫ tf

t0

∫
∂Ω

ṁ dS dt (1)

By solving a surface energy balance equation, the rate ṁ can easily be obtained at surface quadrature points.
Assuming a constant material density ρ, ṁ can be converted to the surface recession rate ṡ:

ṡ =
ṁ

ρ[
ṡ
]

= m/s
[
ṁ
]

= kg/m·s2

Because the thermal response problem from which ∆m is solved at discrete time steps, the time integral in
(1) must be approximated. This paper assumes a fully explicit approach: the surface recession, determined
at time level n, is taken constant until time level n+ 1. Under this assumption, the total change in surface
position over a period of ∆t = tn+1 − tn is

∆s = ṡ∆t
∗Applied Aeroscience and CFD Branch, NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058; AIAA

Member

1 of 30

American Institute of Aeronautics and Astronautics



With this quantity known, we can determine the overall mesh motion by assuming the solid responds to
the strain of deformation by ∆s linearly. The dynamics of displacement u of a position within the material
(domain) Ω are governed by the linear elasticity equation

Lu = f x ∈ Ω

u =
(
ṡ∆t

)
d(x) x ∈ ∂Ω

}
(2)

where u(·) ∈ Rd and the operator L is given by

Lu , −∇λ(∇ · u)− (∇ · µ∇)u−∇ · µ(∇u)T

In general, the homogenous case f ≡ 0 is the only one of practical interest. The vector d indicates the
direction of the surface motion. The variational problem corresponding to (2) is

a(u,v) =
〈
f ,v
〉
L2(Ω;Rd)

∀v ∈ H1(Ω;Rd)

where the bilinear form is

a(u,v) =λ

∫
Ω

(∇ · u)(∇ · v) dx +µ

∫
Ω

〈
∇uT ,∇v

〉
Rd×d dx +µ

∫
Ω

〈
∇u,∇v

〉
Rd×d dx

λ

∫
∂Ω

(∇ · u)
〈
v,ν

〉
Rd dS−µ

∫
∂Ω

〈
(∇uT )d,v

〉
Rd dS−µ

∫
∂Ω

〈
(∇u)d,v

〉
Rd dS

(3)

where we use the standard inner products

〈
A,B

〉
Rd×d = trace(ATB) =

d∑
i=1

d∑
j=1

AijBji

〈
f ,g
〉
L2(Ω;Rd)

=

∫
Ω

〈
f ,g
〉
Rd dx =

d∑
i=1

∫
Ω

fi(x)gi(x) dx

Because the sole boundary condition in the problem is of Dirichlet type and will be enforced as an essential
boundary condition, we require v ∈ H1

0 (Ω;Rd) so that the surface integrals of (3) all vanish.

We distinguish three disjoint subsets of ∂Ω:

∂ΩR: Receding portion Specified motion of ∆s along d

∂ΩS : Sliding portion Motion in the normal direction forbidden

∂ΩF : Stationary (fixed) portion No motion in any direction permitted

In a simple approach, the direction of motion d is taken to be the surface normal ν. While simple to
implement, this has two unfortunate and undesirable consequences:

1. As we shall see in the coming section, it precludes sliding motion along any axis other than a coordinate
one in a finite-element based formulation of (2).

2. On curved surfaces, the normal vectors from element to element are not parallel. This dooms the mesh
to an inevitable collision with itself. An example is depicted in Figure 1 below.

This report presents a scheme for two- and three-dimensional meshes that simulatenously removes the first
restriction while not suffering from the second drawback. We dub this method “tangle-free mesh motion.”

In one-dimension, there is only one possible direction of motion: “normal” (left or right), always directed
into the material. Tangling is impossible and sliding conditions do not exist, since prohibiting motion in the
normal is equivalent to quashing all motion. As a result, mesh motion in one-dimension is fully resolved.

2 of 30

American Institute of Aeronautics and Astronautics



(a) (b)

Fig. 1: Collision Course. The starting geometry is depicted on the left in (a); here, ∂ΩR is the curved
part and the two flat sides (aligned with the x and y axes) comprise ∂ΩS . When aerodynamic heating is
applied to ∂ΩR of this ablating isoq, after sufficient simulation time, the result is (b). The material has

receded and the mesh has become tangled. The thermal solve will fail shortly after this occurs.

II. Two-Dimensional Meshes

A. General Framework

Suppose Ω has been discretized with a finite element mesh T and let T ∈ T be an element in this mesh such
that |T ∩ ∂Ω|Rd−1 > 0; that is, the intersection with the boundary is nontrivial (more than a single point in
two-dimensions). Let {x1, · · · ,xm} ⊂ ∂T ∩ ∂Ω and assume that {xm+1, . . . ,xN}∩ ∂Ω = ∅. On T , the finite
element solution to (2) is a given by a representation in terms of local shape functions:

u
∣∣
T =

N∑
k=1

αkψk(x)e1 + βkψk(x)e2 (4)

As defined in finite element software packages (e.g., libMesh, deal.II), a shape function is the Lagrange
interpolant at the nodes of a single element T ∗. It has the property ψi(xj) = δij whenever xj is a node of T ∗.
The finite element basis functions are assembled from piecewise definitions involving these shape functions.

While representing vector solutions with scalar basis functions by decomposing into components as in (4)
is advantageous in software, it is inconvenient for this discussion. We thus consider a reindexing scheme by
creating vector-valued shape functions

ϕk(x) =

{
ψk(x) e1

ψk−N (x) e2

1 ≤ k ≤ N
N + 1 ≤ k ≤ 2N

so that u is more concisely written as

u
∣∣
T =

2N∑
k=1

αkϕk(x) (5)

It is this separation into Cartesian components that prohibits sliding along any axis other than a coordinate
one. The boundary condition is a Dirichlet one of movement specified along d. Suppose we enforce this
condition by setting the appropriate degrees of freedom in the above representation. In R2, if d 6= αei for

3 of 30

American Institute of Aeronautics and Astronautics



some α and i, then for each k such that xk ∈ ∂Ω, we must set the boundary conditions

αk =
ṡ(xk)∆t

d(1)
αk−N =

ṡ(xk−N )∆t

d(2)

whereby d(i) represents the ith componenta of d, all of which are necessarily nonzero by assumption. On a
sliding set, ṡ ≡ 0. All available degrees of freedom go to representing d in the standard basis so that the
above quashes all motion when d is not aligned with a coordinate axis.

The solution, therefore, is to change the basis from the standard
{
e1, e2

}
to one more appropriate for local

conditions. Define, instead, the following vector basis functions:

ϕ̃k(x) =


ψk(x) pk

ψk(x) e1

ψk−N (x) qk−N

ψk−N (x) e2

1 ≤ k ≤ m
m+ 1 ≤ k ≤ N
N + 1 ≤ k ≤ m+N

m+N + 1 ≤ k ≤ 2N

For each k, we require R2 = span {pk,qk} so that all solution vectors are representable in {ϕ̃k}Nk=1. For the
moment, suppose that each pk and qk is known a priori ; defining these directions is a matter of circumstance
and the focus of a future section. The new shape functions can be written in terms of the old:

ϕ̃k(x) =


p

(1)
k ϕk(x) + p

(2)
k ϕk+N (x)

ϕk(x)

q
(1)
k−Nϕk−N (x) + q

(2)
k−Nϕk(x)

ϕk(x)

1 ≤ k ≤ m
m+ 1 ≤ k ≤ N
N + 1 ≤ k ≤ m+N

m+N + 1 ≤ k ≤ 2N

(6)

We may encode the transformation as matrix multiplication

ϕ̃k(x) =

2N∑
l=1

Mklϕl(x) (7)

where Mkl are the entries of the matrix

M =



p
(1)
1 0

. . .

0 p
(1)
m

0 · · · 0
...

. . .
...

0 · · · 0

p
(2)
1 0

. . .

0 p
(2)
m

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

1 0
. . .

0 1

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

q
(1)
1 0

. . .

0 q
(1)
m

0 · · · 0
...

. . .
...

0 · · · 0

q
(2)
1 0

. . .

0 q
(2)
m

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

1 0
. . .

0 1


N −m

N

N −m
N

N
−
m

N

N
−
m

N

The element stiffness matrix K is the Gram matrix for the associated bilinear form a( · , · ) when the basis
functions are restricted only to a single element. It has entries

Kij = a(ϕi,ϕj)

aWe follow standard convention: boldface for vectors quantities, normal weight for scalar ones.

4 of 30

American Institute of Aeronautics and Astronautics



Let K̃ be the element stiffness matrix for the new basis functions ϕ̃k. Then using (7), we have

K̃ij = a(ϕ̃i, ϕ̃j)

= a

(
2N∑
l=1

Milϕl(x),

2N∑
l′=1

Mjl′ϕl′(x)

)

=

2N∑
l=1

2N∑
l′=1

Mjl′a(ϕl(x),ϕl′(x))Mil

=

2N∑
l=1

(
2N∑
l′=1

Mjl′Kll′

)
Mil

which we recognize, though matrix multiplication, as the congruence relation

K̃ =MTKM (8)

The element contribution to righthand-side vector, which we denote as the vector E which has entries

Ek =
〈
f ,ϕk

〉
L2(T )

can be transformed in a similar manner. Let Ẽ have entries

Ẽk =
〈
f , ϕ̃k

〉
L2(T )

Then using (7), we have

Ẽk =

2N∑
l=1

Mkl

〈
f ,ϕl

〉
L2(T )

or in terms of matrix-vector multiplication
Ẽ =MTE (9)

A bit of forward thinking reveals that that one-dimensional subspaces are sufficient to describe the motion
of a node. Once we’ve determined the new location of a receding node, we can compute a single vector of
motion by subtracting the new position from the old. For sliding sets, motion is forbidden in the normal
direction but allowed in the orthogonal complement of the normal—this is again a one-dimensional subspace.
Consequently, nonzero motion will occur in the direction of at most one of pk and qk. We can therefore
simplify matters considerably by choosing that q places M into a favorable form. By taking

qk =
[
p

(2)
k ,−p(1)

k

]T
(10)

M becomes symmetric:

M =



p
(1)
1 0

. . .

0 p
(1)
m

0 · · · 0
...

. . .
...

0 · · · 0

p
(2)
1 0

. . .

0 p
(2)
m

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

1 0
. . .

0 1

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

p
(2)
1 0

. . .

0 p
(2)
m

0 · · · 0
...

. . .
...

0 · · · 0

−p(1)
1 0

. . .

0 −p(1)
m

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

1 0
. . .

0 1



(11)

If |pk| = 1, then M becomes an orthogonal matrix, making inversion trivial.

5 of 30

American Institute of Aeronautics and Astronautics



B. Applying the Corrections

As long asM is invertible, we can obtain the stiffness for the old basis vectors from that of the new ones. This
is especially convenient in software because the component-decomposition of ϕk greatly simplifies storage
and bookeeping requirements. For a true representation involving the ϕ̃k, we must store thousands of vector
components and track what maps where. It is therefore more advantageous to use the ϕ̃ as an intermediate
local step and ultimately return to a representation in ϕk.

As long as M is invertible, we can do exactly what we propose above by reversing (8) and (9):

K =M−T K̃M−1 =MK̃M
E =M−T Ẽ =MẼ

with the second equalities following from the orthorgonality of M.

The symmetric M was constructed under the assertation that only a single direction would describe the
motion, but this does not mean that we will always enforce a single direction of motion. When only one
direction is enforced, the dynamics of the linear elastic system determine the motion in the reciprocal basis
direction. This is precisely what we desire for sliding side sets but not receding ones, on which we wish to
specify exactly the magnitude and direction of motion.

Analagous to (5), we can write the finite element solution in terms of the new basis as

u
∣∣
T =

2N∑
k=1

α̃kϕ̃k(x)

Choose pk = d(xk), the direction of the boundary condition at xk. Then we can set the boundary condition
exactly by equating this condition with the corresponding degree of freedom:

α̃k = ŝ(xk)

where ŝ is the (perhaps nonphysical) prescribed value of recesssion, and when appropriate (i.e., motion in
the direction of qk should be quashed)

α̃k−N = 0

Ordinarily, when degrees of freedom are set in this manner, the corresponding variables are removed from
the system and references to those quantities replaced by the predetermined value. Unfortunately, this is
not possible here because the above sets degrees of freedom in ϕ̃k, which are local shape functions, not finite
element basis functions. Accordingly, removal of system variables would require a complex and cumbersome
bookeeping step that would negate much of the perceived value of reducing the system size.

Instead, we exploit the nature of finite precision arithmetic: if we have

ε−1a+ b = ε−1c

then a → c as ε → 0+ if min
{∣∣a

b

∣∣ , ∣∣ ba ∣∣} � ε−1. On a computer, by taking ε−1 ∼ 1015, for instance, it is
possible to obtain a ≈ c to nearly machine precision. This technique is known as a penalty method.

To enforce the condition via the penalty method, we modify K̃ and Ẽ by adding perturbations:

K̃ 7→ K̃ + Pi

Ẽ 7→ Ẽ + Bi

The subscripts on P and B match the number of degrees of freedom being set (single or double enforcement).
With these modifications, the contributions from the element T to the global stiffness matrix A and right-
hand vector F become, per (8),

A
∣∣
T = K 7→M

(
K̃ + Pi

)
M

F
∣∣
T = E 7→M

(
Ẽ + Bi

) =⇒
=⇒

A
∣∣
T = K + K̂i

F
∣∣
T = E + Êi

K̂i ,MPiM
Êi ,MB

(12)

6 of 30

American Institute of Aeronautics and Astronautics



1. Single Enforcement

When only one degree of freedom is set, the perturbations take the form

P1 , ε
−1


I 0

0 0

 B1 , ε
−1



ŝ(x1)
...

ŝ(xm)

0
...
0


(13)

m
2
N
−
m

m 2N−m

in which I denotes the identity matrix. If we partition M as

M =

[
M11 M12

M21 M22

]
with the blocks defined along the thick dividing lines of (11), we can exploit the block structure of P and
perform the required multiplication easily:

MP1M =

[
M2

11 M11M12

M21M11 M21M12

]
(14)

We thus obtain a nicely simplifed result for the corrections to the stiffness matrix and righthand-side vector:

K̂1 =
1

ε



[
p

(1)
1

]2
0 p

(1)
1 p

(2)
1 0

. . .
. . .[

p
(1)
m

]2
p

(1)
m p

(2)
m

0 0
. . .

. . .

0 0 0 0

p
(1)
1 p

(2)
1 0

[
p

(2)
1

]2
0

. . .
. . .

p
(1)
m p

(2)
m

[
p

(2)
m

]2
0 0

. . .
. . .

0 0 0 0



Ê1 =
1

ε



ŝ(x1)d
(1)
1

...

ŝ(xm)d
(1)
m

0
...

0

ŝ(x1)d
(2)
1

...

ŝ(xm)d
(2)
m

0
...

0


N
−
m

N
−
m

2. Double Enforcement

When both degrees of freedom are set, we have

P2 , ε
−1


I 0 0 0

0 0 0 0

0 0 I 0

0 0 0 0

 B2 , ε
−1


ŝ(p1, . . . ,pm)

0

ŝ(p⊥1 , . . . ,p
⊥
m)

0

 (15)

The block sizes in P2 mirror those of M when partitioned along the dotted and thin black lines in (11):

M =


M11 0 M13 0

0 I 0 0

M31 0 M33 0

0 0 0 I


7 of 30

American Institute of Aeronautics and Astronautics



The vector p⊥k is qk as defined by (10). Within B2, the block ŝ(d1, . . . ,dm) ∈ Rm is defined as

ŝ(d1, . . . ,dm) ,


ŝ(x1; d1)

...

ŝ(xm; dm)

 (16)

The inclusion of a direction di indicates that the recession value ŝ(xi) is in the direction di. Performing the
multiplication to form K̂2, we have

K̂2 =


M2

11 + M13M31 0 M11M13 + M13M33 0

0 0 0 0

M31M11 + M33M31 0 M31M13 + M2
33 0

0 0 0 0


Each block Mij is a diagonal matrix. Letting

[
A
]
ij

denote the (i, j) entry of the matrix A, we can compute

the entries in the above representation:[
M2

11 + M13M31

]
ii

=
[
p

(1)
i

]2
+
[
p

(2)
i

]2
= 1[

M11M13 + M13M33

]
ii

= p
(1)
i p

(2)
i − p

(2)
i p

(1)
i = 0[

M31M11 + M33M31

]
ii

= p
(2)
i p

(1)
i − p

(1)
i p

(2)
i = 0[

M31M13 + M2
33

]
ii

=
[
p

(1)
i

]2
+
[
p

(2)
i

]2
= 1

Then, we obtain an amazingly simple result for K̂2 and slightly complicated one for Ê2:

K̂2 =
1

ε



1 0
. . .

. . .

1 0

0 0
. . .

. . .
0 0

0 1
. . .

. . .

0 1

0 0
. . .

. . .
0 0



Ê2 =
1

ε



〈
p1, ŝ(x1; p1,p

⊥
1 )
〉

...〈
pm, ŝ(xm; pm,p

⊥
m)
〉

0
...

0〈
p⊥1 , ŝ(x1; p1,p

⊥
1 )
〉

...〈
p⊥m, ŝ(xm; pm,p

⊥
m)
〉

0
...

0


m m

N −m N −m

m
m

N
−
m

N
−
m

N
−
m

N
−
m

We reuse the previous notation (16) for compactness; for clarity, the entries of Ê2 are of the form〈
p, ŝ(x∗; p,p⊥)

〉
= ŝ(x∗; p)p(1) + ŝ(x∗; p⊥)p(2)〈

p⊥, ŝ(x∗; p,p⊥)
〉

= ŝ(x∗; p)p(2) − ŝ(x∗; p⊥)p(1)

C. Setting the Direction and Magnitude of Motion

The previous section supposes that the recession values and directions of motion are known a priori. This
section describes how to determine them. First, we need to define a simple but critical concept:

8 of 30

American Institute of Aeronautics and Astronautics



A side set is a subset of ∂Ω. Each of ∂ΩR, ∂ΩS , and ∂ΩF is the union of side sets.

Definition (Side set).

In implementation, the user will specify the side sets so that ∂ΩR, ∂ΩS , and ∂ΩF are fully determined. For
any two side sets S and S ′, it is not the case that S ∩ S ′ = ∅; instead, we should have the property that
|S ∩ S ′|Rd−1 = 0 so that non-empty intersections can be no more than singletons in 2D and lines in 3D.

How the directions of motion are constructed depend on the problem geometry and the location of the node.
Side sets allow for quick and easy classification that eliminates the need for complex geometric detection
algorithms. With their help, we reduce the analysis to two node types in two-dimensions:

In two-dimensional meshes, a node is a corner node if it is contained in two side sets. It is an
interior node if it is contained in only one side set.

Definition (2D Node Classification).

It is important to note the distinction between our definition of a corner and the geometric notion of a
corner. Automatic detection based on the latter is precarious, as it is easy for an algorithm to misclassify
coarse portions of the mesh, which can occur even in well-constructed meshes after extensive recession.

1. Corner Nodes

In two dimensions, a node is contained in exactly two boundary faces (edge). It is possible for a node to
be contained in an arbitrary number of elements but our requirement that intersection with the boundary
be non-trivial excludes from consideration all but one or two. It is beneficial to realize that the elements
themselves are not important—it is the edges that give us the important information. We therefore simplify
our analysis by disregarding the elements once we’ve identified the boundary edges.

The physical recession values ṡ are known only at quadrature points along the edge, yet the results of the
previous section require a value at the node itself. A potential solution is apparent:

1. Choose the value of ṡ at the closest quadrature point for each edge.

2. Interpolate between these two values to construct an estimate for ṡ at the node.

While seemingly sound, this method has a major deficiency: with only two values, we must use linear
interpolation in step 2. Besides physical incorrectness, this effort is unable to consider curvature or other
properties of the mesh and is likely to lead to poor mesh quality and skewed geometry. Instead, the solution
is, in essence, to move the entire edge at once:

1. For each face, compute the “new quadrature points” by moving ṡ along ν, both of which are known
exactly, and then compute the best fit line through these new points to determine the new edge.

2. Compute the intersection of the new edges and make that the new location of the node.

3. The motion ŝ and direction vector p are obtained by subtracting the old location from the new.

This idea is realized in Algorithm 1 below. Further explanation of the steps follows the presentation.

1. Let E be the edge containing the node x∗ from one side set and E ′ be the other.

2. Let x1, . . . ,xq be the quadrature points of E . Let νk and ṡk be the normal and recession
values, respectively, specified at the quadrature point xk. Let x′1, . . . ,x

′
q′ , ν

′
k, and ṡ′k be the

similarly named and corresponding quantities from E ′.

Algorithm 1 (Corner Motion).

9 of 30

American Institute of Aeronautics and Astronautics



3. Compute the centroids of the sets
{
xk + (ṡk∆t)νk

}q
k=1

and
{
x′k + (ṡ′k∆t)ν′k

}q′
k=1

:

c ,
1

q

q∑
k=1

[
xk + (ṡk∆t)νk

]
c′ ,

1

q′

q′∑
k=1

[
x′k + (ṡ′k∆t)ν′k

]
4. Form the 2× q matrix A and 2× q′ matrix A′

A ,
[

x1 + (ṡ1∆t)ν1 − c · · · xq + (ṡq ∆t)νq − c
]

A′ ,
[

x′1 + (ṡ′1∆t)ν′1 − c′ · · · x′q + (ṡ′q′∆t)ν
′
q − c′

]
5. Compute the singular value decompositions of A and A′:

A = UΣV A′ = U′Σ′V′

where U ∈ R2×2, Σ ∈ R2×q, V ∈ Rq×q, U′ ∈ R2×2, Σ′ ∈ R2×q′ , and V′ ∈ Rq′×q′ . Let
n1 , u3 and n2 , u′3, the third columns of U and U′, respectively.

6. Solve the linear system [
−n(2)

1 n
(2)
2

n
(1)
1 −n(1)

2

][
s∗

t∗

]
= c′ − c

and set x∗new = c + s∗
[
− n(2)

1 , n
(1)
1

]
.

7. Set ŝ = |x∗new − x∗| and p = ŝ−1
(
x∗new − x∗

)
.

8. Follow Section 2 with the above p and ŝ. Take ŝ(x∗; p⊥) = 0.

(continued).

The points x̃k , xk + (ṡk∆t)νk are the “new quadrature points,” merely the result of applying the motion
at each quadrature point. They will not necessarily be the quadature points of the new edge. In fact, the
x̃k need not be colinear if q > 2. As a result, the new edge is determined by best-fit, the solution to

min
n̂,y∈R2

q∑
k=1

〈x̃k − y, n̂〉2

We can simplify our problem considerably with the following lemma:

The least-squares best-fit plane of {xk}Nk=1 ⊂ Rd contains the centroid c = 1
N

∑N
k=1 xk.

Lemma 1.

For a proof of this result, see the Appendix. We seek the “best one-dimensional subspace” spanned by the
columns of A. To find this subspace, we call upon the singular value decomposition

A = UΣVT

where U ∈ R2×2 and unitary, V ∈ Rq×q and unitary, and Σk ∈ R2×q of the form

Σ =

[
Σr 0r×(q−r)

0(2−r)×r 0(2−r)×(q−r)

]
Σr =


σ1

. . .

σr



10 of 30

American Institute of Aeronautics and Astronautics



in which r = rank A and σ1 ≥ · · · ≥ σr > 0. This second lemma further aids us in our quest:

The first s columns of U represent the “biggest” s-dimensional subspace, the one that has the
smallest representation error in Euclidean norm, contained in range(A).

Lemma 2.

The proof of Lemma 2 is again contained in the Appendix. These two lemma explain the mysterious
subtraction of c from each column of A and c′ from A′. First, we note that range(A) = range

[
u1 · · · ur

]
:

Ax = U
[
σ1V

Tx · · · σrV
Tx 0 · · · 0

]
=

r∑
i=1

σi〈x,vi〉ui

Since the centroid is contained in the best-fit plane, by subtracting it from each data point creates a candidate
for the best-fit line we seek. The task therefore becomes to find a single vector that best encapsulate the
columnspaces of A (and similarly for A′), a problem to which we can directly apply Lemma 2.

The above machinery explains how steps 1-5 of Algorithm 1 compute the new edges; we have E 7→ (c,n1)
and E ′ 7→ (c′,n2), where the pairing indicates the normal vector and point inside the new edge “plane.”
From the contents of these pairings we can write parametric expressions for the new edges:

E 7→ `(s) = c +s
[
− n(2)

1 , n
(1)
1

]
E ′ 7→ `′(t) = c′+t

[
− n(2)

2 , n
(1)
2

]
Step 6, therefore, computes the intersection of ` and `′ in terms of the above parameterization and sets the
location of x∗new to be the point `(s∗) = `′(t∗). As promised, the direction of motion p is the vector that
takes us from the original location to x∗new; normalizing this vector and saving the original length gives us ŝ.
Since this completely describes the desired displacement, we quash movement in the orthogonal complement.

F
motion

F

p

Fig. 2: Illustration of Algorithm 1. The left shows an element with two receding sides (in red and
blue) along with the quadrature points on each edge. The corner node x∗ is the purple star. Algorithm 1
computes the receded edges independently and then finds the location of the new node by intersecting the
lines formed by a best-fit plane through the perturbed quadrature points, depicted on the left. Note that

recession need not be uniform across an edge, as shown here.

While Figure 2 above depicts the case of a double receder, the algorithm cares not for the specific combination
of sliding and receding edges. When one side is fixed, Algorithm 1 will not display the correct behavior when

11 of 30

American Institute of Aeronautics and Astronautics



the other side is receding; in implementation, it is advantageous to detect the presence of a fixed side set and
immediately suppress all motion, eliminating the unnecessary overhead of the algorithm. When both sides
are sliding, the end result is that the node will remain in its original location, so including logic to process
that case quickly is also a boon to speed, although Algorithm 1 will also produce this effect.

2. Interior Nodes: Receders

This section will look very similar to the preceding one when written.

Summary of method: Recede each edge by best-fit line as we did in the corner case. However, the intersection
between these edges may not be defined, if they were parallel to begin with and remained so after recession.
Instead, we use the internal edge from the element home to the receding edges. The intersection of the new
edge with the internal edge is computed. This gives two new points in total; the centroid of the two is taken
and that becomes the new node location.

3. Interior Nodes: Sliders

A slider is characterized by forbidden motion in the normal direction. Up to this point, we have avoided
asking for this elusive vector at nodes. If the boundary were smooth, there would be no issue. As elements
are polygonal, the boundary of the computational domain is only Lipschitz, which means that the normal is
only defined almost everywhere. The set of points where it is not defined is precisely the set of nodes—and
precisely where we need it.

Because faces are straight lines between nodes, the normal is the same everywhere on a given face. On a
particular face, the normal at the node can be defined via limiting procedure: for a fixed ξ ∈ ∂Ω ∩ ∂T :

ν(ξ → x) = lim
h→0+,h′→0−

ν
(
x1 + (ξ1 − x1)h, x2 + (ξ2 − x2)h′

)
(17)

Unfortunately, it is insufficient to consider only a single element, as shown in Figure 3.

ξ1

T

x∗

ξ2 T ′

Fig. 3: Difficulties in Finding ν. In (a), for an “ordinary” T (shaded in green), (17) will always
converge to the green vector independently of ξ1 ∈ ∂T ∩ ∂Ω. The steps of the limiting process are the

dashed vectors. On T ′ (shaded in purple), the purple vector will be obtained regardless of the starting ξ2.
This results in a node possessing a normal vector for each element in which it is contained.

On a per element basis, there is no issue in (a). However, the finite element basis functions ψk are constructed

12 of 30

American Institute of Aeronautics and Astronautics



from shape functions; using the new basis functions {ϕ̃k}, we’d have something like

ψk∗(x) =


ϕ̃k1,T (x) x ∈ T
ϕ̃k2,T ′(x) x ∈ T ′

...

if the green node x∗ is node number k1 within T , k2 within T ′, and k∗ overall. If different normals at x∗

are allowed for different elements, we would have ϕ̃k1,T (x∗) 6= ϕ̃k2,T ′(x
∗) so that ψk∗ would no longer be

continuous. Consequently, the “ordinary case” of (a) must be resolved by simultaneously considering all
elements containing each boundary node. Fortunately, in R2, there can be only two such elements.

Let x ∈ ∂T ∩ ∂T ′ and ν1 , ν(ξT → x) and ν2 , ν(ξT ′ → x) be the normals obtained from (17) applied
within T and T ′, respectively. We then define the normal at x to be the “average” of the two normals:

ν(x) =
ν1 + ν2

|ν1 + ν2|
(18)

A visual depiction of (18) is shown below in Figure 4.

ν1

T

x∗

ν2

T ′

ν

Fig. 4: The Solution to ν. ν1 (in green, solid) and ν2 (in purple, solid) are produced from the limiting
process (17); ν (in red, dashed) is the result of (18) applied to these two vectors.

D. Example Problems

This section will contain several examples of the two-dimensional scheme in action.

III. Three-Dimensional Meshes

The straightforward analysis possible in the 2D case can be attributed to two key facts:

1. Each node can be contained in at most two elements that intersect the boundary non-trivially.

2. Given a direction of motion, there are exactly two vectors orthogonal to it. Choosing appropriately
allows us to construct a symmetric transformation matrix M.

Unfortunately, neither of these hold in three dimensions. Consequently, the script for analysis diverges
significantly from that 2D. An example of how (1) above may be violated is depicted in the figure below.

Another distinguishing feature of the 3D case is that there is more than one type of corner. In 2D, a node
is a corner if it is either contained in two side sets or is contained in two faces within the same element. In
3D, because the number of containing elements may be arbitrary, attempts to characterize nodes based on
elements is an exercise in futility. Instead, nodes are classified according to the user-specified side sets:

13 of 30

American Institute of Aeronautics and Astronautics



(a) (b)

Fig. 5: An Arbitrary Number of Boundary Faces: Consider the red node in each subfigure.
Well-placed quadrilaterals lead to the “nicest” case of 4 containing elements, shown in (a). Addition of

mixed elements, such as tetrahedrons and pyramids in (b), complicates things considerably.

A boundary node is a pure corner node if it is contained in three side sets. It is an edge corner
node if it is contained in two side sets. An interior node is contained in a single side set.

Definition (Node Classification).

(a) (b) (c)

Fig. 6: Corners in 3D. Each side set is indicated by a different color. (a) depicts a pure corner. In this
example, all three containing faces are in the same element, but this is not always the case. (b) and (c)
depict edge corners. A bevy of configurations is possible, but there can be only two side sets involved.

The use of side sets to classify nodes shifts burden onto the user during grid generation. This is necessary
because there is no way to tell from the mesh geometry alone how a node should be treated. By using side
sets for identification, control remains with the user so that no errenous processing will occur.

A. General Framework

As we did in 2D, we begin with the vector-valued shape functions on an element T

ϕk(x) =


ψk(x) e1 if 1 ≤ k ≤ N

ψk−N (x) e2 if N + 1 ≤ k ≤ 2N

ψk−2N (x) e3 if 2N + 1 ≤ k ≤ 3N

14 of 30

American Institute of Aeronautics and Astronautics



and define the new shape functions

ϕ̃k(x) =



ψk(x) pk

ψk(x) e1

ψk−N (x) qk−N

ψk−N (x) e2

ψk−2N (x) rk−2N

ψk−2N (x) e3

1 ≤ k ≤ m
m+ 1 ≤ k ≤ N
N + 1 ≤ k ≤ m+N

m+N + 1 ≤ k ≤ 2N

2N + 1 ≤ k ≤ m+ 2N

m+ 2N + 1 ≤ k ≤ 3N

The directions pk, qk, and rk should be considered arbitrary at the moment. We mirror the procedure that
led to (6) and seek a matrix that encodes the transformation from old to new elements via

ϕ̃k(x) =

3N∑
l=1

Mklϕl(x)

To extend the previous result (??) to three dimensions, we need to construct M to be symmetric. In 2D,
restriction to a single direction of motion makes this task straightforward, as creating an orthogonal basis
yielding a symmetric M is merely a matter of choosing the correct sign. In 3D, it is necessary to enforce
multiple directions of motion. In such cases, a symmetricM is beyond the realm of possibility, as that would
require that every invertible matrix be similar to a symmetric one. Consequently, developing the framework
for obtaining the correction to the stiffness matrix A

∣∣
T when M is not symmetric is our foremost task.

B. Applying the Corrections

1. Element Stiffness Matrix

Suppose the directions of motion pk, qk, and rk have been predetermined and that these directions are

linearly independent. Furthermore, suppose that p
(1)
k 6= 0, q

(2)
k 6= 0, and r

(3)
k 6= 0. Given a set of vectors that

do not meet this criterion, we can always relabel them according to the following:

Let vk1 , vk2 , and vk3 be linearly independent vectors in R3. Let

(k′1, k
′
2, k
′
3) ∈ arg min

π∈Π(k1,k2,k3)

trace(diag Qπ)−1 (19)

where Π(k1, k2, k3) denotes the set of permutations of {k1, k2, k3}, diag(·) is the operator that
extracts diagonal elements from a matrix, and for π = (k′′1 , k

′′
2 , k
′′
3 ) the matrix Qπ is

Qπ ,


∣∣v(1)
k′′1

∣∣ ∣∣v(2)
k′′1

∣∣ ∣∣v(3)
k′′1

∣∣∣∣v(1)
k′′2

∣∣ ∣∣v(2)
k′′2

∣∣ ∣∣v(3)
k′′2

∣∣∣∣v(1)
k′′3

∣∣ ∣∣v(2)
k′′3

∣∣ ∣∣v(3)
k′′3

∣∣


Then v

(1)
k′1
6= 0, v

(2)
k′2
6= 0, and v

(3)
k′3
6= 0.

Lemma 3 (Rearrangement Algorithm).

15 of 30

American Institute of Aeronautics and Astronautics



The result can be seen clearly by writing out the trace (19) explicitly:

trace(diag Qπ)−1 =
1∣∣v(1)
k′′1

∣∣ +
1∣∣v(2)
k′′2

∣∣ +
1∣∣v(3)
k′′3

∣∣ (20)

If one of v
(1)
k′′1

, v
(2)
k′′2

, or v
(3)
k′′3

is zero, (20) will be infinite, and thus cannot be the minimum unless

all permutations result in this degeneracy. We now show that since span {vk1 ,vk2 ,vk3} = R3, at
least one arrangement results in finite (20). Let nz(v) count the number of zero components of a
vector v ∈ R3. WLOG, we may suppose that nz(vk1) ≥ nz(vk2) ≥ nz(vk3).

Case I: nz(vk1) = 2.
Because span {vk1 ,vk2 ,vk3} = R3, we have

det
[
vk1 vk2 vk3

]
6= 0

Let i be the nonzero component of vk1 and i′ amd i′′ be the zero components. Then performing
a Laplace expansion on the mth column to evaluate the above determinant, we have

v
(i)
k1

det

[
v

(i′)
k2

v
(i′)
k3

v
(i′′)
k2

v
(i′′)
k3

]
︸ ︷︷ ︸

, A

6= 0

or that detA 6= 0. Consequently, each column of A has at least one nonzero entry; hence, at least
one of π = (k1, k2, k3) or π = (k1, k3, k2) makes (20) finite.

Case II: nz(vk1) = 1.

At least one of v
(1)
k1
6= 0, v

(1)
k2
6= 0, or v

(1)
k3
6= 0 holds; suppose one is v

(1)
m 6= 0. Set k′′1 = m. It then

follows that only one of v
(2)
m 6= 0 or v

(3)
m 6= 0 is true.

Subcase II.1: v(2)m = 0.

At most one of v
(2)
m′ = 0 or v

(2)
m′′ = 0 is true, where

{
m′,m′′

}
=
{
k1, k2, k3

}
\
{
m
}

.

Subcase II.1.1: v
(2)
m′ 6= 0 and v

(2)
m′′ 6= 0. At most one of v

(3)
m′ = 0 or v

(3)
m′′ = 0. Put

k′′3 =

{
m′ v

(3)
m′′ = 0

m′′ v
(3)
m′ = 0

k′′2 =

{
m′′ v

(3)
m′′ = 0

m′ v
(3)
m′ = 0

If v
(3)
m′′v

(3)
m′ 6= 0, then we may assign m′ and m′′ to k′′2 and k′′3 indiscriminately.

Subcase II.1.2: v
(2)
m′ = 0. Because nz(vm′) ≤ 1, it must be that v

(3)
m′ 6= 0. Put

k′′3 = m′. Then v
(2)
m′′ 6= 0, so put k′′2 = m′′ to give a permutation that makes (20) finite.

Subcase II.2: v(3)m = 0. Repeat Subcase II.1 with the symbol swap (2)� (3).

Case III: nz(vk1) = 0.

All components of vk1 , vk2 , and vk3 are nonzero. All permutations yield a finite (20). �

Proof.

16 of 30

American Institute of Aeronautics and Astronautics



With the directions properly arranged by the Rearrangement Algorithm, we put

M =



p
(1)
1 0

. . .

0 p
(1)
m

0 · · · 0
...

. . .
...

0 · · · 0

p
(2)
1 0

. . .

0 p
(2)
m

0 · · · 0
...

. . .
...

0 · · · 0

p
(3)
1 0

. . .

0 p
(3)
m

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

1 0
. . .

0 1

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

q
(1)
1 0

. . .

0 q
(1)
m

0 · · · 0
...

. . .
...

0 · · · 0

q
(2)
1 0

. . .

0 q
(2)
m

0 · · · 0
...

. . .
...

0 · · · 0

q
(3)
1 0

. . .

0 q
(3)
m

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

1 0
. . .

0 1

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

r
(1)
1 0

. . .

0 r
(1)
m

0 · · · 0
...

. . .
...

0 · · · 0

r
(2)
1 0

. . .

0 r
(2)
m

0 · · · 0
...

. . .
...

0 · · · 0

r
(3)
1 0

. . .

0 r
(3)
m

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

1 0
. . .

0 1



(21)

By the Rearrangement Lemma, each diagonal block of M is nonsingular. A secondary secondary benefit of
assigning the directions in this manner is that the matrices

M11 ,


p

(1)
1

. . .

p
(1)
m

 M33 ,


q

(2)
1

. . .

q
(2)
m

 M55 ,


r

(3)
1

. . .

r
(3)
m


should be reasonably well-conditioned: if one of

∣∣v(i)
k′i

∣∣� 1, then per (20), we will have trace(diag Qπ)−1 � 1.

Such a permutation is unlikely to yield the minumum trace, with one exception: a poor quality grid may
yield a column in Qπ with nothing but small entries. In this case, there will be no avoiding poor conditioning.

Invertibility of M is necessary to return to the original finite element basis ϕk from ϕ̃k. First, observe that
we may permute M into the following form:

M′ =


C1 0 0

. . .
...

0 Cm 0

0 · · · 0 I


where Ck is the change of basis matrix

Ck ,

 pTk

qTk

rTk



17 of 30

American Institute of Aeronautics and Astronautics



The directions pk, qk, and rk are assumed to be linearly independent. Thus, each Ck is invertible, and so
is M′. As there exists a nonsingular matrix P such that M = PM′, it follows that M is also nonsingular.

Partition M along the thick lines of (21) as follows:

M =



M11 0 M13 0 M15 0

0 I 0 0 0 0

M31 0 M33 0 M35 0

0 0 0 I 0 0

M51 0 M53 0 M55 0

0 0 0 0 0 I


,

 A B

C D



where the blocks of the rightmost side correspond to the dividing lines on the left side. By construction,
A = M11 is invertible. To see that D−1 exists, we permute M into the form

M′′ =



I 0 0 0 0 0

0 M33 0 M35 0 M31

0 0 I 0 0 0

0 M53 0 M55 0 M51

0 0 0 0 I 0

0 M13 0 M15 0 M11


=

 D C

B A



and confirm by direct computation (which we omit here) that M′′ has an LU -decomposition because M33

and M55 are invertible. We then recall that a matrix has an LU -decomposition if and only if all leading
principle submatrices are nonsingular [Bernstein, p.260]. Because D is such forM′′, it must be nonsingular.

Recall the Schur complement S and “Haynsworth complement” H of M:

S , A− BD−1C
H , D − CA−1B

We can further compute the determinant of M by block:

det(M) = det(A) det(H)

= det(D) det(S)

which gives that both S−1 and H−1 exist. Knowing this, we recall the following result [B., p.44-45]:

Let A ∈ Cn×n, B ∈ Cn×m, C ∈ Cm×n, and D ∈ Cm×m. If A and S are nonsingular, then A B

C D


−1

=

 S−1 −S−1BD−1

−D−1CS−1 D−1 +D−1CS−1BD−1


If D and H are nonsingular, then A B

C D


−1

=

 A−1 +A−1BH−1CA−1 −A−1BH−1

−H−1CA−1 H−1



Lemma 4 (Block Inversion).

18 of 30

American Institute of Aeronautics and Astronautics



Each Mkl ∈ Rm×m is diagonal and I denotes the identity matrix of size N −m; the sizes of the zero blocks
follow from context. To the return to stiffness matrix in terms of the old shape functions from the new, we
must use equation (8) and not (??) because M is not symmetric in this case. As in 2D, we have

A
∣∣
T =M−T K̃M−1

= K +M−TPM−1 (22)

Depending on the classification of the node, one or more directions may be unenforced. That is, we allow
motion in that direction to be determined by the dynamics of the system. Because the order of directions is
set by (19), P is dependent on its classification. Fortunately, for each boundary node xk, we can write the
general form

Pk = ε−1
[
f0,k ei0e

T
i0 + f1,k ei1e

T
i1 + f2,k ei2e

T
i2

]
where i0 , k, i1 , k +N , and i2 , k + 2N , and

f0,k =

{
1 pk enforced

0 otherwise
f1,k =

{
1 qk enforced

0 otherwise
f2,k =

{
1 rk enforced

0 otherwise

so that the full form of P is given by

P =

m∑
k=1

Pk (23)

Consequently, we need only compute

M−T
(
ej eTj

)
M−1 =

(
M−Tej

)(
M−Tej

)T
for j = i0, i1, i2 to generate everything we will need to assemble A

∣∣
T on the fly.

Ordinarily, inversion of a matrix is a tall order and recommended only if it can be done in exact arithmetic.
Fortituous for us, because the blocks of M consist of entirely diagonal matrices, M−T is not nearly so
daunting to construct. Observe that within the Block Inversion Lemma, the blocks are the same size so that

S−1 = A−1 +A−1BH−1CA−1 S−1BD−1 = A−1BH−1

H−1 = D−1 +D−1CS−1BD−1 D−1CS−1 = H−1CA−1

as long as all these quantities exist. We previously established that they do; consequently, we may “pick
and choose” which among these is most convenient to compute. Because S is m × m and diagonal, it is
trivial to invert. Formation of H requires inverting A, again m ×m, but then we must invert H, which is
(N −m)× (N −m), the same size as D. Hence, there is no advantage offered by the alternate form of the
Block Inversion Lemma. As D is already known, we choose to invert it. We begin by partitioning D as

D =



I 0 0 0 0

0 M33 0 M35 0

0 0 I 0 0

0 M53 0 M55 0

0 0 0 0 I


,


I 0 0

0 Dr 0

0 0 I

 (24)

so that we need only compute D−1
r . This time, however, is is convenient to apply the “pick and choose”

version of the Block Inversion Lemma. Doing so, we can obtain an expression for D−1
r :

D−1
r =


S−1 0 −S−1M35M

−1
55

0 I 0

−H−1
r M53M

−1
33 0 H−1

r

 (25)

19 of 30

American Institute of Aeronautics and Astronautics



where S is the Schur complement of Dr and Hr is the reduced Haynsworth complement of Dr,

S = M33 −M35M
−1
55 M53

Hr = M55 −M53M
−1
33 M35

With D−1 in hand, we can write expressions for S and S−1BD−1:

S = M11 −M13S
−1
(
M31 −M35M

−1
55 M51

)
−M15H

−1
r

(
M51 −M53M

−1
33 M31

)
S−1BD−1 =

[
0 −S−1P1 0 −S−1P2 0

]
where

P1 ,M15H
−1
r M53M

−1
33 −M13S

−1 (26)

P2 ,M13S
−1M35M

−1
55 −M15H

−1
r (27)

To get M−T from here, it is simply a matter of multiplying everything out and transposing:

M−T =



S−1 0 S−1P3 0 S−1P4 0

0 I 0 0 0 0

S−1P1 0 S−1 + S−1P3P5 0 S−1P4P5 −H−1
r M53M

−1
33 0

0 0 0 I 0 0

S−1P2 0 S−1P3P6 − S−1M35M
−1
55 0 H−1

r + S−1P4P6 0

0 0 0 0 0 I


(28)

where

P3 , −S−1
(
M31 −M35M

−1
55 M51

)
(29)

P4 , −H−1
r

(
M51 −M53M

−1
33 M31

)
(30)

P5 ,M15H
−1
r M53M

−1
33 −M13S

−1 (31)

P6 ,M13S
−1M35M

−1
55 −M15H

−1
r (32)

In implementation, due to the diagonality of all matrices invovled, full matrix multiplication may be avoided
entirely by working node-by-node. To this end, we compute the ith diagonal entry of all the ingredients
needed to create M−T :

S(i,i) = q
(2)
i −

q
(3)
i r

(2)
i

r
(3)
i

P
(i,i)
3 = − 1

S(i,i)

(
q

(1)
i −

q
(3)
i r

(1)
i

r
(3)
i

)

H(i,i)
r = r

(3)
i −

q
(3)
i r

(2)
i

q
(2)
i

P
(i,i)
4 = − 1

H
(i,i)
r

(
r

(1)
i −

r
(3)
i q

(1)
i

q
(2)
i

)

P
(i,i)
1 =

p
(3)
i r

(2)
i

H
(i,i)
r q

(2)
i

− p
(2)
i

S(i,i)
P

(i,i)
5 =

p
(3)
i r

(2)
i

H
(i,i)
r q

(2)
i

− p
(2)
i

S(i,i)

P
(i,i)
2 =

p
(2)
i q

(3)
i

S(i,i)r
(3)
i

− p
(3)
i

H
(i,i)
r

P
(i,i)
6 =

p
(2)
i q

(3)
i

S(i,i)r
(3)
i

− p
(3)
i

H
(i,i)
r

S(i,i) = p
(1)
i −

p
(2)
i

S(i,i)

(
q

(1)
i −

q
(3)
i r

(1)
i

r
(3)
i

)
− p

(3)
i

H
(i,i)
r

(
r

(1)
i −

r
(2)
i q

(1)
i

q
(2)
i

)

20 of 30

American Institute of Aeronautics and Astronautics



Noting that when a matrix multiplies ek, the result is the extraction of the kth column, we have

M−Tei0 =
[

0, . . . , 0, β
(1)
k , 0, . . . , 0, β

(2)
k , 0, . . . , 0, β

(3)
k , 0, . . . , 0

]T
(33)

M−Tei1 =
[

0, . . . , 0, γ
(1)
k , 0, . . . , 0, γ

(2)
k , 0, . . . , 0, γ

(3)
k , 0, . . . , 0

]T
(34)

M−Tei2 =
[

0, . . . , 0, δ
(1)
k , 0, . . . , 0, δ

(2)
k , 0, . . . , 0, δ

(3)
k , 0, . . . , 0

]T
(35)

k−1 N−k N−1 N−k

k−1 N−k N−1 N−k

k−1 N−k N−1 N−kwhere

β
(1)
k =

1

S(k,k)
γ

(1)
k =

P
(k,k)
3

S(k,k)
δ

(1)
k =

P
(k,k)
4

S(k,k)

β
(2)
k =

P
(k,k)
1

S(k,k)
γ

(2)
k =

1

S(k,k)
+
P

(k,k)
3 P

(k,k)
5

S(k,k)
δ

(2)
k =

P
(k,k)
4 P

(k,k)
5

S(k,k)
−

r
(2)
k

H
(k,k)
r q

(2)
k

β
(3)
k =

P
(k,k)
2

S(k,k)
γ

(3)
k =

P
(k,k)
3 P

(k,k)
6

S(k,k)
−

q
(3)
k

S(k,k)r
(3)
k

δ
(3)
k =

1

H
(k,k)
r

+
P

(k,k)
4 P

(k,k)
6

S(k,k)

Finally, to assist in assembling (22), let

Rk ,M−TPkM−1

= ε−1

3∑
j=1

fj,k
(
M−Teij

)(
M−Teij

)T
Per (34)–(35), there are only nine nonzero entries in Rk:

R
(i0,i0)
k = ε−1

[
f0,kβ

(1)
k β

(1)
k + f1,kγ

(1)
k γ

(1)
k + f2,kδ

(1)
k δ

(1)
k

]
R

(i0,i1)
k = ε−1

[
f0,kβ

(2)
k β

(1)
k + f1,kγ

(2)
k γ

(1)
k + f2,kδ

(2)
k δ

(1)
k

]
R

(i0,i2)
k = ε−1

[
f0,kβ

(3)
k β

(1)
k + f1,kγ

(3)
k γ

(1)
k + f2,kδ

(3)
k δ

(1)
k

]

R
(i1,i0)
k = ε−1

[
f0,kβ

(1)
k β

(2)
k + f1,kγ

(1)
k γ

(2)
k + f2,kδ

(1)
k δ

(2)
k

]
R

(i1,i1)
k = ε−1

[
f0,kβ

(2)
k β

(2)
k + f1,kγ

(2)
k γ

(2)
k + f2,kδ

(2)
k δ

(2)
k

]
R

(i1,i2)
k = ε−1

[
f0,kβ

(3)
k β

(2)
k + f1,kγ

(3)
k γ

(2)
k + f2,kδ

(3)
k δ

(2)
k

]

R
(i2,i0)
k = ε−1

[
f0,kβ

(1)
k β

(3)
k + f1,kγ

(1)
k γ

(3)
k + f2,kδ

(1)
k δ

(3)
k

]
R

(i2,i1)
k = ε−1

[
f0,kβ

(2)
k β

(3)
k + f1,kγ

(2)
k γ

(3)
k + f2,kδ

(2)
k δ

(3)
k

]
R

(i2,i2)
k = ε−1

[
f0,kβ

(3)
k β

(3)
k + f1,kγ

(3)
k γ

(3)
k + f2,kδ

(3)
k δ

(3)
k

]

(36)

Finally, recalling (23), the contribution to the global element stiffness matrix from T is then

A
∣∣
T = K +

m∑
k=1

Rk (37)

2. Right-side Vector

The final piece to the puzzle is the contribution to the right-side vector F
∣∣
T ; for this, we need only compute

the perturbation MB, where

B ,
[
f0,kŝ(p1, . . . ,pm)T 0 f1,kŝ(q1, . . . ,qm)T 0 f2,kŝ(r1, . . . , rm)T 0

]T
(38)

21 of 30

American Institute of Aeronautics and Astronautics



Each 0 is a N −m row vector of zeros. The block ŝ(d1, . . . ,dm) ∈ Rm is defined as

ŝ(d1, . . . ,dm) ,


ŝ(x1; d1)

...

ŝ(xm; dm)


The inclusion of a direction di indicates that the recession value ŝ(xi) is in the direction di. We denote it ŝ
instead of the usual ṡ because this value may be nonphysical and encompasses all contributions to motion.
For example, the recession of a quadrature point is ṡ∆t; ŝ would include this factor of ∆t.

The multiplication E
(3Dc)
mod ,MB has the same block structure as (28) and (38); the result is

E
(3Dc)
mod =

[
ET

1 0 ET
2 0 ET

3 0
]T

(39)

where the vectors E1,E2,E3 have components

E
(j)
1 , f0,kŝ(xi; pj)p

(0)
j + f1,kŝ(xi; qj)q

(0)
j + f2,kŝ(xi; rj)r

(0)
j

E
(j)
2 , f0,kŝ(xi; pj)p

(1)
j + f1,kŝ(xi; qj)q

(1)
j + f2,kŝ(xi; rj)r

(1)
j

E
(j)
3 , f0,kŝ(xi; pj)p

(2)
j + f1,kŝ(xi; qj)q

(2)
j + f2,kŝ(xi; rj)r

(2)
j

(40)

3. Summary

For node k within an element, suppose we have determined the directions of motion vk1 , vk2 , and vk3 with
known recession values ŝ1, ŝ2, and ŝ3, respectively. These values and directions may be nonphysical and may
not all be enforced. The procedure to compute the needed corrections is as follows:

1. Arrange the directions into pk, qk, and rk via the Rearrangement Lemma.

2. Mark which of these directions are to be enforced via f0,k, f1,k, and f2,k.

3. For each node on the boundary xk, 1 ≤ k ≤ m, compute the nonzero entries to the correction matrix
Rk via (36). Add these values into the local element stiffness matrix A

∣∣
T .

4. Compute the correction (39) to the right-side vector. The entries of this addition are given in (40).

C. Quantifying the Motion

Section B assumes that all the directions pk, qk, and rk and the corresponding ŝ values are known a priori.
CHAR specifies the values of ṡ only at the face quadrature points. Constructing the direction and recession
pairs

(
pk, ŝ(xk; pk)

)
,
(
qk, ŝ(xk; qk)

)
, and

(
rk, ŝ(xk; rk)

)
at each node xk from ṡ and ν at quadrature points

is non-trivial and is the focus of this section. To illustrate the challenges we face, consider Figure 7 below.

F
recede

Fig. 7: Physically Correct Recession. If the temperature over the parallelogram’s surface (red) is
uniform, the surface should recede in a direction parallel to its current plane of existence (right).

22 of 30

American Institute of Aeronautics and Astronautics



Figure 7 depicts a parallelepiped with a single receding face (colored red); the faces adjacent to it are
sliding faces and the remaining one (parallelogram in the back) is fixed. On physical grounds, we expect the
parallelogram face to melt away and the element to kept its general shape through recession.

Figure 8 above highlights the difficulty in choosing directions of recession that lead to the physically correct
result. At the edge corners (in blue), we require that the node remain on the sliding face; this keeps the
exoskeleton formed by the four corner nodes and preserves the parallelepiped’s general shape.

recede

Fig. 8: When the “Right” Direction Goes Wrong. Edge corners (blue nodes) should move in the
face in the sliding side set so that the sliding condition trumps the receding one. At the red interior nodes,

the “natural” direction of motion is the normal vector. The result of this motion is on the left.

At the interior nodes (in red), we have no information of the existence of a sliding face because all analysis
is done on a per-element basis. Furthermore, even if we did know of the sliding side sets, there is one in each
cardinal direction–which is the “right one”? As such, it seems that the natural direction for interior nodes
is the normal vector. However, the right side of the figure reveals that such motion causes mesh quality to
deteriorate. Continued motion along the normal sets up a future unavoidable collision with an edge.

Complicating matters is that each interior node is contained in multiple elements. Figure 8 depicts a simple
example in which each face in the receding side set has the same normal. If the receding set is a surface and
not a mere plane, defining the normal at nodes is difficult—and defining ŝ is harder yet.

1. Pure Corner Nodes

Perhaps contrary to expectations, the simplest case is the pure corner. A typical situation is depicted below:

ν1,ṡ1

ν3,ṡ3

ν2,ṡ2

x∗

Fig. 9: Typical Pure Corner Case. The three different colors indicate the three side sets that contain
the pure corner x∗. The normal vectors for each side are indicated.

If any of the three side sets is of motion type “stationary,” the node should remain fixed in place. We set
p = e1, q = e2, r = e3 and ŝ(x∗; · ) ≡ 0 and move on. We therefore focus on combinations of sliding and

23 of 30

American Institute of Aeronautics and Astronautics



receding side sets. Unlike the other node types we shall explore later, there are no subcases for each possible
combination of sliding and receding side sets.

It is tempting to choose the face normals as directions of motion (as in Figure 9). However, ṡ is known only
at quadrature points; choosing the value of ṡ at the closest quadrature point is physically incorrect and likely
to lead to poor mesh quality and skewed geometry. Instead, the solution is, in essence, to move entire side
sets: we collect the face quadrature points from each face containing x∗ in the side set, move each according
to its known values of ν and ṡ, and then compute the best-fit plane through the resultant points. We then
find the intersection of these three planes, guaranteed to be unique except in degenerate cases.

The process is prescribed precisely in Algorithm 2 below:

1. Choose a side set Sj which contains x∗. Let F1, . . . ,Fmj ∈ Sj be the faces containing x∗.

2. Let xk,1, . . . ,xk,qk ∈ Fk be the quadrature points of the kth face. Let νk,i and ṡk,i be the
normal and recession value, respectively, specified at the quadrature point xk,i.

3. Compute the centroid of the collection

mj⋃
k=1

{
xk,i + (ṡk,i∆t)νk,i

}qk
i=1

:

cj ,
1

mj

mj∑
k=1

1

qk

qk∑
i=1

[
xk,i + (ṡk,i∆t)νk,i

]
4. For each k = 1, . . . ,mj , form the 3× qk matrix

Ak ,
[

xk,1 + (ṡk,1∆t)νk,1 − cj · · · xk,qk + (ṡk,qk∆t)νk,qk − cj

]
and glue all of these together to form the 3×Qj matrix, where Qj ,

∏mj

k=1 qk

A =
[

A1 · · · Amj

]
5. Compute the singular value decomposition of A:

A = UΣVT

where U ∈ R3×3, Σ ∈ R3×Qj , and V ∈ RQj×Qj . Let d1 , u3, the 3rd column of U.

6. Repeat Steps 1-5 for the remaining two side sets to obtain c2, d2, c3, and d3.

7. Solve the linear system  dT1

dT2

dT3

xnew =

〈d1, c1〉
〈d2, c2〉
〈d3, c3〉

 (41)

8. Set â , x∗new − x∗ and ŝ , |â|. Compute the singular value decomposition

â = ÛΣ̂V̂T

9. Set w1 , (sgn〈â, û1〉) û1, w2 , û2, w3 , û3, where ûi is the ith column of Û.

10. Follow Section B with the direction and recession pairs (w1, ŝ), (w2, 0), (w3, 0), all enforced.

Algorithm 2 (Pure Corner Motion).

24 of 30

American Institute of Aeronautics and Astronautics



Steps 1 and 2 are self-explanatory: collect all faces containing x∗ along with the quadrature points and
recession values and normals at those points. In steps 3 and 4, we work with the “new quadrature” points
x̃k,i , xk,i + (ṡk,i∆t)νk,i. Because ṡ is specified at each quadature point, we can compute with absolute
certainty the new locations of only quadrature points after recession.

From the collection of x̃k,i from the entire side set (containing x∗), we must extract a single plane. For all
but sliding side sets or single face receding sets and those with uniform temperature (so that ṡ ≡ constant
across the side set), the set of x̃k,i are unlikely to be coplanar. To determine the post-recession face, we
must obtain a best-fit plane through these points. As in 2D, Lemma 1 and Lemma 2 aid us in our question.
As we did before, we call upon the singular value decomposition to obtain this best-fit plane.

Each plane generated in Step 5 is described by the equation
〈
x − ci,di

〉
= 0. Writing out these three dot

products and casting into matrix form leads to the 41, the solvability of which is aided by the following:

The normal vectors ν1, ν2, and ν3 of adjacent faces of a tetrahedron span R3.

Lemma 5.

Let a, b, and c be the edge vectors at the vertex formed by the intersection of the faces having
normals ν1, ν2, and ν3, arranged such that ν1 = a× b, ν2 = b× c, and ν3 = a× c. Because all
vectors lie in R3, we have that

det
[
ν1 ν2 ν3

]
= ν1 · (ν2 × ν3) (42)

Expanding ν2 and ν3 in terms of a, b, and c, and applying the identity for the the vector triple
product a′ × (b′ × c′) = b′(a′ · c′)− c′(a′ · b′), we have

ν2 × ν3 =
(
a · (b× c)

)
c

Hence,

ν1 · (ν2 × ν3) =
[
(a× b) · c

][
(b× c) · a

]
=
[
(a× b) · c

]2
by the nature of the scalar triple product. The volume of the tetrahedron is 1

6 |(a× b) · c|, so if
the lefthand side is zero, then the tetrahedron is vacuous—a contradiction. Accordingly, it follows
that ν1, ν2, and ν3 are linearly independent and hence span R3. �

Proof.

For hexahedra and pyramids, we can construct a tetrahedron contained in the original polygon that overlaps
with the original adjacent faces in question, thus extending the above result to these polygons. The lemma
itself, of course, is not directly applicable to (41). The vectors that determine (41) are normal vectors from
planes not known a priori to form a polygon. However, since the new plane is a best-fit of perturbed points
from the original and the determinant is a continuous map that measures volume, we can reasonably expect
(42) to remain nonzero. The contrary requires motion of one face so dramatic that it becomes parallel to
another, highly unlikely unless this were nearly true originally (e.g., a shield-like corner).

The intersection point determined in Step 7 is the location of the new node. Step 8 computes an artificial
direction of motion â, directed toward the new location from the old. The recession value ŝ is the length of

this vector; SVD provides both a normalized version of â and a basis for
{
â
}⊥

. We must adjust for sign,

since û1 = ± |â|−1
â. It is crucial that the direction be pointed toward xnew to be consistent with ṡ.

2. Edge Corner Nodes

Recall that an edge corner node is one that is contained in two different side sets. Geometry can differ wildly
among instances of edge corners (two simple examples are depicted in Figure 6). Since the set of potential

25 of 30

American Institute of Aeronautics and Astronautics



F

motion

F

â

xnew

Fig. 10: Visual Depiction of Algorithm 2. This figure depicts a simple example of Algorithm 2 in
action. The geometry before motion is shown on the left. The blue (left) and yellow (right) faces are

receding, with uniform recession at each face’s quadrature points but different between the two faces. The
green (top) face is sliding. The left diagram shows the motion of the node: it moves from the purple circle

to the red star xnew. The direction â is indicated. The length of this vector gives ŝ.

configurations is seemingly unbounded, any attempt to account for special geometries amounts to a feral
anatidae pursuit (or more colloquially, a “wild goose chase”). Instead, we design for “typical” cases such as
those in the figure and place some burden on the user to have designed a reasonable mesh.

We identify three possible configurations: when both side sets are receding, when one is sliding and the other
receding, and when both are sliding. When one set is stationary, we set all motion to zero as we did before.

3. Edge Corner: Receder/Receder

We begin with the most complex of the cases: double receders. This configuration causes the most issues for
simple mesh motion schemes; success in handling this case is therefore a hallmark of the tangle-free mesh
motion scheme. The method is ostensibly similar to pure corner case but necessarily differs in a few aspects
due to the increased complexity of the edge corner.

Summary of method: Very similar in spirit to the pure corner case. We have two sides in motion. We
compute the new faces by best-fit planes as we did in the pure corner case. To replace the missing third
side, we use internal (non-boundary) faces that contain the node. The intersection with the new faces is
computed for each internal face. We then take the new location of the node to be the centroid of all these
intersection points.

4. Edge Corner Nodes: Receder/Slider

We begin by presenting the mathematical algorithm. Explanation of the various steps follows after.

1. Let F1, . . . ,Fm be the boundary faces containing x∗ in the receding side set; F ′1, . . . ,F ′m′ ,
in the sliding side set.

2. (Receding side set.) Let xk,1, . . . ,xk,qk ∈ Fk be the quadrature points of the kth receding
face. Let νk,i and ṡk,i be the normal and recession value, respectively, specified at xk,i.

Algorithm 3 (Edge Corner: Double Receder).

26 of 30

American Institute of Aeronautics and Astronautics



3. Compute the centroid of the collection
⋃m
k=1

{
xk,i + (ṡk,i∆t)νk,i

}qk
i=1

:

c ,
1

m

m∑
k=1

1

qk

qk∑
i=1

[
xk,i + (ṡk,i∆t)νk,i

]
4. For each k = 1, . . . ,m, form the 3× qk matrix

Ak ,
[

xk,1 + (ṡk,1∆t)νk,1 − c · · · xk,qk + (ṡk,qk∆t)νk,qk − c
]

and glue all of these together to form the 3×Q matrix, where Q ,
∏m
k=1 qk,

A =
[

A1 · · · Am

]
5. Compute the singular value decomposition of A:

A = UΣVT

where U ∈ R3×3, Σ ∈ R3×Q, and V ∈ RQ×Q. Let P be the plane with normal vector
ν , u3, the 3rd column of U, passing through the point c.

6. (Sliding side set.) Let x′k,1, . . . ,x
′
k,q′k
∈ F ′k be the quadrature points of the kth sliding face.

7. Compute the centroid of the collection
⋃m′
k=1

{
x′k,i

}q′k
i=1

:

c′ ,
1

m′

m′∑
k=1

1

q′k

q′k∑
i=1

x′k,i

8. Form the 3×Q′ matrix, where Q′ ,
∏m′

k=1 q
′
k,

A′ ,
[

x′1,1 − c′ · · · x′1,q1 − c′ · · · x′m′,q′
m′
− c′ · · · x′m′,q′

m′
− c′

]
9. Compute the singular value decomposition of A′:

A = U′Σ′V′
T

where U′ ∈ R3×3, Σ′ ∈ R3×Q′ , and V′ ∈ RQ′×Q′ . Let P ′ be the plane with normal vector
ν′ , u′3, the 3rd column of U′, passing through the point c′.

10. Let F ′′1 , . . . ,F ′′b be the non-boundary (internal) faces containing x∗. Let ν′′k and c′′k be the
normal and centroid, respectively, of F ′′k .

11. For each k = 1, . . . , b, compute the intersection of P, P ′, and F ′′k by solving

[
ν ν′ ν′′k

]T
x(k)

new =

 〈ν, c〉〈ν′, c′〉
〈ν′′k , c′′k〉

 (43)

12. Compute the centroid of
{

x
(k)
new

}b
k=1

. Call this point x∗new.

(continued).

27 of 30

American Institute of Aeronautics and Astronautics



13. Set â , x∗new − x∗ and ŝ , |â|. Compute the singular value decomposition

â = ÛΣ̂V̂T

14. Set w1 , (sgn〈â, û1〉) û1, w2 , û2, w3 , û3, where ûi is the ith column of Û.

15. Follow Section B with the direction and recession pairs (w1, ŝ), (w2, 0), (w3, 0), all enforced.

(continued).

Steps 1-5 mirror those for the pure corner case exactly; steps 6-9 repeat the procedure for the sliding side
set. As before, we compute a single best fit plane for all containing faces in each side set. In the pure corner
case, Here, though, the maneuver seems to be more precarious.
[Some results and theorems that prove what we did isn’t so bad]

5. Edge Corner Nodes: Slider/Slider

This section will look similar to the one on Pure Corners once it is written.

Summary of method: The two edges, E1 and E2, containing the node that live between the sidesets are
identified (there are always only two). We move along E1 to the next node, identify the other edge between
the sidesets containing that node, and move along it. We repeat this process until we come to another sideset
or loop back to where we started. If the encountered sideset is a receder, then we select E2 as the direction
of motion; otherwise, we use E1. We then compute the orthogonal complement to the selected direction with
the SVD and enforce zero-motion conditions in these two orthogonal directions.

6. Interior Nodes

Recall that an interior node is defined by a single common side set shared among all faces containing x∗.
Our analysis requires us to distinguish three cases by the nature of motion of this side set.

The easiest case is when the motion of the side set is “stationary.” While this case can be covered by one
of the two coming cases, the amount of detection and computation done in those cases ultimately goes to
waste for a stationary side set. It is therefore more efficient to detect this case and handle it immediately:
set p = e1, q = e2, r = e3 and ŝ(x∗; · ) ≡ 0 and enforce these boundary conditions.

7. Interior Nodes: Receders

It is most clear to present the algorithm first and then explain its components afterwards.

1. Let F1, . . . ,Fm be the boundary faces containing x∗.

2. Let xk,1, . . . ,xk,qk ∈ Fk be the quadrature points of the kth face. Let νk,i and ṡk,i be the
normal and recession value, respectively, specified at the quadrature point xk,i.

3. Compute the centroid of the points
{
xk,i + (ṡk,i∆t)νk,i

}qk
i=1

:

ck ,
1

qk

qk∑
i=1

[
xk,i + (ṡk,i∆t)νk,i

]

Algorithm 4 (Interior Receder).

28 of 30

American Institute of Aeronautics and Astronautics



4. Form the 3× qk matrix

Ak ,
[

xk,1 + (ṡk,1∆t)νk,1 − ck · · · xk,qk + (ṡk,qk∆t)νk,qk − ck

]
5. Compute the singular value decomposition of Ak:

Ak = UkΣkV
T
k

where Uk ∈ R3×3, Σk ∈ R3×qk , and Vk ∈ Rqk×qk . Let ν̂k , u3, the 3rd column of Uk.

6. Repeat Steps 2-5 for each k ∈
{

1, . . . ,m
}

to obtain ck and ν̂k for each face Fk.

7. Locate each edge containing x∗ that is not contained on Fk. This will yield the collection{
ēk,i
}nk

i=1
, each of which should be first normalized.

8. For each i = 1, . . . , nk, compute the intersection of the line `i(t) = x∗+ t ēk,i with the plane
with normal ν̂k passing through the point ck (kth best fit plane). First, compute

αi ,

〈
ck − x∗, ν̂k

〉〈
ēk,i, ν̂k

〉
The intersection point is then given by

yk,i , x∗ + αiēk,i

9. Repeat Steps 7 and 8 for each k ∈
{

1, . . . ,m
}

.

10. Compute the centroid of the collection

m⋃
k=1

{
yk,i

}nk

i=1
:

x∗new ,

(
m∑
k=1

nk

)−1 m∑
k=1

nk∑
i=1

yk,i

11. Set â , x∗new − x∗ and ŝ , |â|. Compute the singular value decomposition

â = ÛΣ̂V̂T

12. Set w1 , (sgn〈â, û1〉) û1, w2 , û2, w3 , û3, where ûi is the ith column of Û.

13. Follow Section B with the direction and recession pairs (w1, ŝ), (w2, 0), (w3, 0).

(continued).

8. Interior Nodes: Sliders

This section will look similar to the preceding one once it’s written.

Summary of the method: use radial basis functions to obtain an estimate of the surface normal vector. By
perturbing along the known normal vectors at the quadrature points, we can construct a function whose
gradient gives the normal at any point.

D. Example Problems

This section will contain several examples of the three-dimensional scheme in action.

29 of 30

American Institute of Aeronautics and Astronautics



x∗

Fig. 11: Algorithm 4 in Action, Part I. This figure shows Steps 1-6 of Algorithm 4 in action. The
quadrature points on each face move their specified ṡ units along the normal for that location. The best-fit

plane for the new points is then computed (colored planes) by the SVD.

IV. Conclusion

Summary and wrap-up.

Appendix

Some proofs of results I have used; they are not new results but the insight in the proof may be useful to
those who have not seen these concepts before but are interested.

30 of 30

American Institute of Aeronautics and Astronautics


