Introduction

Outside the protection of the geomagnetic field, astronauts and other living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. Whether space flight factors, microgravity in particular, have effects on cellular responses to DNA damage induced by exposure to radiation or cytotoxic chemicals is still unknown, as is their impact on the radiation risks for astronauts and on the mutation rate in microorganisms. Although possible synergistic effects of space radiation and other space flight factors have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate effects of space flight on cellular responses to DNA damages, human fibroblast cells flown to the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB) similar to the ionizing radiation. Differences in the DNA were measured by the phosphorylation of a histone protein H2AX (γH2AX), which showed slightly more foci in the cells on ISS than in the ground control. The expression of genes involved in DNA damage response was also analyzed using the PCR array. Although a number of the genes, including CDKN1A and PCNA, were significantly altered in the cells after bleomycin treatment, the cells on the ISS were found to be proliferating faster than the ground control as measured by the percentage proliferation (Ki-67) of the cells in space, but with a 6 hour offset from the flight schedule at Kennedy Space Center (KSC).

Experimental Design (continued)

Experimental Details: Confluent human fibroblast AG1522 cells in Biocells were treated with placebo or 1.0 μg/ml of Bleomycin for 3 hours, and then washed with PBS and fixed with formaldehyde or RNAlater II. The cells were kept at -20°C until returning to Johnson Space Center (JSC). Ground experiments were performed exactly the same way as in space, but with a 6 hour offset from the flight schedule at Kennedy Space Center (KSC).

Analysis: Cells fixed with formaldehyde were subjected to immunofluorescence staining to access cellular proliferation (Ki-67) and the extent of DNA damages (γH2AX).

Results (Continued)

Quantification of DNA damage by counting of γH2AX staining patterns (Type I, II, & III) showed no significant differences between the flown and ground cells.

Quantification of DNA damage by counting of γH2AX foci per nucleus (in Type III only) showed that cells in space flight were more sensitive to bleomycin treatment. Insert shows that there were slightly more proliferating cells in the flight population on Day 3.

Control ground experiments confirmed that cells with higher proliferating population were more sensitive to bleomycin treatment. Shown below are examples of subconfluent cells (> 90% Ki-67 positive) were slightly more sensitive to bleomycin treatment of the same concentration.

Conclusions

- Space flight had little effects on the cellular response to bleomycin-induced DNA damages in confluent human fibroblast cells as measured by the pattern of γH2AX.
- Spaceflight did not affect the response of the DNA damage response genes to bleomycin treatment in confluent human fibroblast cells.
- The slight difference in the γH2AX focus count between the flown and ground cells after bleomycin treatment was likely due to the faster growth rate of the cells in space.

*Work supported by the NASA Fundamental Space Biology Program.