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Interactions between Ground State Oxygen Atoms and Molecules: O—O and O,—

0,*

Josepn T. VANDERSLICE, EDWARD A. MASON, AND WiLuian G. MAlscH

© Institule for Molecular Physics, University of Maryland, Collcge Park, Maryland
(I\’cccivcd June 22, 1959) . '

Potential encrgy curves for 0—O interactions corres pondmg to the X *%,7, 1A, I5,%, A, A 32..*, 1z

and B 3T, states of O; have been calculated from spectroscopic data by thc Rydbexg Klein-Rees method.
Curves for the remaining twelve states of-Oz dissociating-to-greund-state-atoms.have_been_obtained from

relations derived from approximate qu'mtum -mechanical calculations, and checked against the ‘meager
experimental information available. Two semi-independent calculations have been made, and are in good
agrecment with each other. The quantum-mechanical relations also lead to an approximate 0,—0Qs5 inter-
action, which is consistent with intcractions derived from vibrational relaxation times and from high- tcm- '

perature gas v1qc051ty data

INTRODUCTION

HIS is the third in a series of papers: dé'xling with .
the interactions among nitrogen and oxygen atoms -

and molecules. Such interactions are not only of im-
portance in the calculation of transport properties of
air at high temperatures, but a proper knowledge of
them may also lead to a better understanding of the
"chemistry and physics of the upper atmosphere. Pre-
vious papers have dealt with the interactions between
nitrogen atoms and molecules' .and between: oxygen

and nitrogen.? The present paper deals with the calcu-.

lation of th(, interaction energies between oxygen atoms
and ‘molecules.

The most important interactions for the ca]culanon
of "transport properties are those between the ground
state atoms and molecules. When two ground state

coxygen atoms (3£) coll ide, they can follow any onc of.

cighteen potential energy curves,® corresponding to the
sp«.u.Joscop]c states '2,7(2), E,f, 01, UL, *A,, 32.7(2),
82,7, L, TL, A, 3E,5(2), 82, ST, fI1,, and SA,.
SDCCJ‘O\((}[)IC data are av’uldblc on the lowest six

wreh was supported in part by Lhc National Auo«
aulirc and Space Administration.
PVanderslice, Mason, and Lippincott, J. Chem. Phys. 30, 129

{(1939).

*Vanderstice, Mason, and Maisch,- J. Chr‘m Phys. 31, 738
(1939.

3G. Herzhery, Spectra of Diatomic 1lolcculu (D Van Nostrand
Company, Inc., Princeton, New Jersey, ]QJO) p- 321,

: |

. 9'=3% by any of the 33,7,

‘these ‘relations enable the

bound states, X3Z,~, 14, 1Z,*, 12,7, 3A,, and 433,
as well as on the bound B*Z,~ state, which dissociates
into a ground state oxygen atom (*P) and an excited
atom (‘D). Accurate potential energy curves for these ..
states have been calculated by the Rydberg-Klein- .

" Rees (RKR) method.* For the other states dissociating

to ground state atoms the experimental information-is
meager. Wiltkinson and Mulliken® suggest that the %I,
state predissociates the B 32, state at v'=12 on the
left-hand side -of the minimum of the B2, curve.

Here o' is the vibrational quantum number of the

B %%, state. They also mention the possibility of .a
“forbidden” predissociation of the B3Z,” state at
M, or I, states. This
“forbidden” predissociation would occur on the right-
hand side of the minimum of the B33, curve.

Simple quantum-mechanical considerations have
been used -to determine relations among the eighteen
different states of Oy dissociating to ground state atoms.
Once the curves for the six bound states are known,
“tails” of the other curves
to be determined. The curves so calculated -agree with
the results of Wilkinson and Mulliken on the predis-

"4 (a) R. Rydberg, Z. Physik 73, 376 (1931); (b) O. Klein, Z.

V’Physxl\ 76, 226 (]9»’) (c) A. L. G. Rees, Proc. Phys. Soc. (Lon-

don) 59, 998 (1947); (d) V'mdav,hu Mason,
Lippim:att, J. Mol. Spectroscopy 3, 17 (1‘)\9).

e P. G, Wikinson and R. S. Mulliken, Astrophys. J. 125, 594
(1937).
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sociation effects, the only direct experimental checks
available. A semi-independent calculation of the “tails,”
based on the X1 curve of NO and one O.. curve, is
also in good agreement. These relations have been

derived by a modified perfect pairing approximation,
_previously used'? for N, and NO. This modified pairing

scheme affords a description in terms of a combination
of molecular orbital and valence-bond theory, -some-
what along the lines suggested by Linnett.5 The descrip-

_tion further leads to simple relations involving mole- -
cules, so that an Oy—O, potential can be obtained _
from results on the 0—O interactions. This 0;—Q, -

- potential is in agreement with other potentials ob-
“tained from analysis of high-temperature viscosity

data? and from analysis of vibrational relaxation time
data? :

. BOUND STATES OF O,

- -The- potential energy curves for the bound states
T XOZ, 1A, 124, 12, A, A3, and B3Z, were
~ obtained by the RKR method.* Although this method
~ has been described in considerable detail in earlier -

publications,24¢ it has not been emphasized that the
method is quite sensitive to errots in the experimental

_ data in’the region near the dissociation limit. To dis-

cuss’ this point, it will suffice here to give a graphical

.interpretation of the method which follows somewhat
-along the lines given previously.* The purpose of the

method is- to obtain values for the classical turning

‘points of the vibrational motion for a given total
energy U. The method is formulated in terms of the -
. area 2.5,-which is enclosed between the lines of con-

stant ‘energy U and the curve of effective potential
energy Veu(7), T

Vars(r) =V (r)+x/r?, - (1)
where V() is the actual potential energy and «/#? is

¢J. W. Linnett, J. Chem. Soc. 1956, 275.
" M. Salkoff and E. Bauer, J. Chem. Phys. 30, 1614 (1959).

the centrifugal potential term due to rotation (see’
Fig. 1). The two quantities f and g, defined by

f=(3S8/0U)x and g=—(35/0«)y, (2)

are then considered. From Fig. 1 it is easy to see that

F=3 " dr= 4, )

fmin

=3 " @Vasoiyar=3 [ iy

=3 (1/raw)~ (1/ra) ], (4)

where 7ni. and fu., are the classical turning points.
From these relations it can be seen that a knowledge of
S=5(U, «) leads to values of f and g and conse-
quently to values of fuiy and e, The RKR method
expresses .S in terms of the vibrational and rotational
constants obtained from analysis of spectroscopic data.
Hence once the spectroscopic results are known in a
region around U, the function S ‘and consequently.
fmin and 7m,, can be calculated. The method implies
that the data are known up to U, since V. is assumed
known up to U in the integration in Eq. (4). This
means that the -curve has to be built up from the
bottom using the spectroscopic data appropriate in each’

energy region.: o ,
It is obvious from the foregoing presentation that f
and g are very sensitive to the energy near the dissocia-

10 T - »v |‘A.' T

i

25

r{A)

Fic. 2. Summary of O—O interactions. The solid lines have
been calculated by the RKR method. The curve numbering is:
(1) 1, and ',; (2) °I,, T, and 'Ml,; (3) =~ and 32,%; (4)

12045 (5) tAg and 5Z,F; (6) 53¢, (7) ..
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TasLE 1. Potential cnergy of the X 32,~ state of Oa.2
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TasLe II1. Potential energy of the '1Z,* state of Op.°

Ymax (A)

v Viem™) Pmia(A). Viev) v V(em™) rmas (A) rmin (A)  V(ev) T T4V (ev)

0 787.2 1.262 1.158 0.09761 0 712.9 1.285 1.176 . 0.08840 1.7245

1 2 344 1.307 1.126 0.2907 1 2118 1.334 1.144 . 0.2626 .1.8987
.2 3 878 1.340 1.106 ,  0.4809 2 3495 1.371 1.123 0.4333 2.0694

3 5387 ' 1.370 1.091 0.6680 3 4843 1.403 1.107 - 0.6006 2.2367

4 6 873 1.397 1.078 0.8523 4 0164 1.432 1.094 0.7643 2.4004

5 8 337 1.422 1.067 1.0338 : :

6 . 9 778 1.445 1.057 1.2125 -

7 11 196 1.469 1.049 1.3883 8 Experimenta! data from reference 10.

8 12 591 1.491 1.041 1.5613 ’ ) :
1?) }‘; g‘lsg igéi » }8%‘71 %: ;8;{; and Hopfield," Pillow,” Brix and Herzberg,'® Knauss
11 16 640 1.556 1.022 2.0634 and Ballard,” and Herman.!® ,
ig i; 335 %gg;’s 18%? % %gii ~ There is some uncertainty in the numbering of the
14 20 486 1619 1006 25403 v1brat10nal levels of the A4 32u+, ‘E,[‘, and 3Au states.
15 21 722 1.641 - 1.002 2.6935 Herzberg® has assumed that the first measured band in .
16 22 934 1.662 0.997 2.8438 the 13,~«3Z,~ system is the 1-0 band and that the
17 24 122 1.683 0.993 2.9911 . .
18 25 287 1.704 0.989 3.1356 first diffuse band observed by Herman!® at 2913 A is
19 2? 429 1.;2; 0.985 3.2773 ~ the 0-0 band of the 3A,~*Z;~ system. Broida and

, %(1) %8 ggg i 4 gg% . g:ggz' Gaydon,® on the basis of their more recent experimental -

.768

8 Experimental data from references 8-12.

tion limit, since small changes in U or « give large
changes in S there. Any errors in the experimental data
or inaccuracies in the equations used to fit the data will
cause a large error in r. This effect can be seen in the
. calculated curve for the B3Z,~ state (see Table VII -
-and Fig. 2), in which the repulsive side of the curve
has a positive slope near the dissociation limit. Such a
* situation does not seem to have occurred before, proba- -
bly because previous work has not been so close to the
dissociation limit. :
The results obtained for the bound states by the
RKR method are given in Tables .I-VII, and the
. actual.curves are shown as the solid lines in Fig. 2.
" The experimental data were obtained from the follow-
-ing sources: Herzberg®*® Broida and Gaydon,®
Babcock and Herzberg,® Lochte-Holtgreven ~and-
Dieke,"! Feast,” Herzberg and Herzberg,® Hornbeck

. TasLE II. Potential energy of the !A, state of Oz

v V(cm") - ’max (A) min (A) V (ev) T0+V (BV) .
0 751.4 1.2712  *1.166 0.09318 1.0750
1 1.319 1.2589 .

12235 1.134°  0.2771

8 Experimental data from reference 13.
b T, is the energy difference between the bottom of the potential curve for
" the state in question.and the bottom of the curve for the X2, state.

T %(a) G. Herzberg, Can. J. Phys. 30, 185 (1952); (b) H. P.
Broidz)). and A. G. Gaydon, Proc. Roy. Soc. (London5 A222, 181
(1954). '

* 9 G, Herzberg, Can. J. Phys. 31, 657 (1953). .

lo H) D. Babcock and L. Herzherg, Astrophys. J. 108, 167
(1948).

nw, Lochte-Ho_ltgreven and G. H. Dieke, Ann. Physik 3, 937

(1929). . .
12 M, W. Feast, Proc. Phys. Soc. (London) A63, 549 (1950).

131,, Herzberg and G. Herzberg, Astrophys. J. 105, 353 (1947).

work on the oxygen afterglow, have concluded that
~Herzberg’s vibrational assignments for the 432,* state

should be increased by ane unit. If Herzberg’s numbef- -

" ing is used for these states, the A, curve lies below

the A33,* curve over the entire region covered in this
calculation. The 'Z,~ curve lies below both at large -
values of 7, but crosses the %A, curve at r=1.718 A
and the A432,* curve at r=1.628 A. This crossing is in
disagreement with the conclusions of Moffitt”® and of
Fumi and Parr,® who have calculated that the 'Z,~ .
- curve lies below the 3A, curve over the whole region. As .
pointed out by Herzberg, a shift of two_units in the
numbering of. the '=,~ vibrational bands would lower
the 1=,~ curve below the other two. On the other hand,
the theoretical foundations of the electronic structure
calculations are not so well established that the results
of Moffitt and of Fumi and Parr can be taken as com-
pletely reliable. However, since there appears to be
some experimental -evidence that Herzberg’s vibra-

TasLE IV. Poteniial'energy of the %A, state of O,.2

v V(cm"‘) Tmax (A) T min (A) 14 (CV) T¢+V (CV) ‘
0 454.0  1.557 1.420  0.05630 4.3543

1 1323 1.628 1.385 0.1641 4.4621
2 2141 1.685 1.363 0.2655 4.5635
3 2907 1.739 1.347 0.3605 4.6585

4 . 3621 1791 1.334 0.4491 4.7471

5 0 4284 1.844 1.323  0.5312. 4.8292

6 4895 1.312 0.6070 4.9050

1.898

8 Experimental data from references 9 and 18.

(1 “4G). A. Hornbeck and H. S. Hopfield, J. Chem. Phys. 17, 982
949). . : .
M. E. Pillow, Proc. Phys. Soc. (London) A67, 847 (1954).

6 P, Brix and G. Herzberg, Can. J. Phys. 32, 110 (1954).

.17 H. P. Knauss and S. S. Ballard, Phys. Rev. 48, 796 (1935). .
18], Herman, Ann. Physik 11, 548 (1939). '
19 W. Moffitt, Proc. Roy. Soc. (London) A210, 224 (1951).

2 F. G. Fumi and R. G. Parr, J. Chem. Phys. 21, 1864 (1953).
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TaBrLe V. Potential energy of the 4 3Z,* state of Os.

v V{em™) froas (A) rrmim (A) V(ev) T4V (ev)

{a) Experimental data and vibrational assignments from refer-

ence 8a.

0 383.1 1.608 1.46t 0.04751 4.5343
1 1127 1.683 1.421 0.1397 - 4.6265
2 1838 1.743 1.397 0.2279 4.7147
3 2513 1.798 1.380 0.3116 4.7984
4 3149 1.853 1.365 0.3905 4.8773
5 3742 1.908 1.351  "0.4640 4.9508
6 4284 1.971 1.342 0.5313 5.0181
7 4770 2.043 1.334 0.5915 5.0783
8 5188 2.133 1.327 0.6433 5.1301
9 5524 2,257 1

322 7 0.0849 5.1717

(b) Experimental data from reference 8a and vibrational a assign-
ments from reference 8b.

.600

0 397= 1 1.454 0.04923 4.4382
1 1172» 1.669 1.412 0.1453  4.5343
2 1916 1.724 1.386 0.2375 4.6265
3 2627 1.775 - 1.367 0.3257 4.7147
4 3302 1.825 1.351 0.4094 4:7984
5 3938 1.877 1.339 0.4883 4.8773
6 4530 1.931 1.328-  0.5618 4.9508
7 - 5073 1.993 1.319 0.6291 5.0181
8 . 5559 2.064 1.311 - 0.6893 5.0783
9 077 - 2.154 1.305 0.7411 - 5.1301
0 6313 - 2.2717 1

.300 0.7828 5.1717

8 These values ha\_'ye been obtained by extrapolation.

tional assignments for the 432, * state may be incorrect,
" we have calculated two potential curves for this state,

one using Herzberg’s assignments,* and one usmg the
a551gnments of Broida and Gaydon.® These are given
in Tables V(a) and (b). In the subsequent discussion, we
have used the curve based on Herzberg’s assignments.

-Our conclusions would be unchanged 1f the -other

A 32} *+ curve were used.

POTENIIAL CURVES AT LARGE DISTANCES FOR
: BOUND STATES OF O,

The RKR method gives results only in regions where
spectroscopic data are available. It can be seen from

Fig: 2 that the solid RKR lines do not extend to large
“values of 7. For many purposes it is necessary to have
potential curves at the larger distances.

- The 1A, and 125t curves were ﬁtted by Hulburt-

" TasLE VL. Potentiz_il energy of the 12, state of Og.®

L0 VEm ) rman (A) rmim (A) V(ev) TV (ev)

321.0°  1.678 1.517 0.03980 '4.5880

0
.1 941.2 1.764 1.476 0.1167 4.6649
2 1522 1.833 1.452 0.1887 4.7369
3 2067 ... 1.899 1.435 0.2563 4.8045
4 2574 1.964 1.421 , 0.3191 = 4.8673
nS 3042 2.030 1.410 © 0.3772 4.9254
0 3470 2.098 1.400 0.4303 4.9785

® Experimental data from reference 9.

~ Hirschfelder functions? at large distances. The Hul—

burt-Hirschfelder function appears to be about the
best empirical potential available, although it does not
fit the lowest state (X 32,~) very well. These curves
for the 'A, and 'Z,* states are shown as dashed lines
in Fig. 2. The RKR curves for these states are not
known over 4 large enough range of r to furnish a
stringent test of the fit of the empirical potential *
curves, but an indirect check can be obtained. Accord-
ing to Mulliken? (see also Moffitt"?), the energy split-
tings between the three lowest states, X 32,~, !A,, and
1Z,%, should be about equal. Actually, the ratlo of the
splittings is about 1.48 over the known range. If this
ratio is assumed constant for all values of 7, then a
potential at large r can be calculated for the X 32~
state from the two empirical potential curves for the:

Tasre VII. Potential energy of the B 3Z,~ state of O,.*

v V{em™) rmas (A) rmin (A) V(ev) TtV (ev)

0 348.2  1.683 1.531 . 0.04318 6.2187
1 1036 1.756 1.486 0.1285 6.3040
2 1701 1.813, 1.459 0.2110 6.3865
3 2343 1.865 1.438 0.2905 6.4660
4 2960 " 1.914 1.420 0.3671 6.5426
5 3553 1.962 1.405 0.4405 6.6160
6 4114 2.009 1.392 0.5101 - 6.6856
7 4048 2.057 1.380 0.5764 6.7519
8 5149 - 2.112 1.370 0.63384 6.8139
9 5614 2.172 1.362 - 0.6961 6.8716
10 6043 2.235 1.353 0.7493 6.9248
11 6431 .2.302. 1.344 0.7975 6.9730
12 6777 2.386 1.342 0.8403 7.0158
137 7077 . 2.480 1.338 0.8776 - " 7.0531
14 7332 "2.588 1.334 0.9092 7.0847
15 7542 2.721 1.335 0.9352- 7.1107
16 7711 . 2.872 1.340 - 0.9561 7.1316
17 7844 3.055 1.345  0.9726 7.1481
18 7946 3.270 1.354 0.9853 7.1608
19 8021 3.536 1.364 0.9946 7.1701
20 8074 3.900 1.370

1.0012 7.1767

8 Experimental data from references 16 and 17,

1A, and 2, * states. This calculated curve, which can be

' represented by the equation

V(r)=—452.4¢31 ey, L7A<r<254; ()

is also shown dashed in Fig. 2. This dashed line joins -
on fairly smoothly to the RKR curve for the ground
state, thereby giving an indirect check on the other two
curves. The constants for the Hulburt-Hirschfelder

‘curves are given in Table VIIL

The RKR curves for the =, 3A,, and 433, states
are known over a large enough range of r to test
rigorously any empirical potential function. The %A,
state was best represented at large distances by a
Hulburt-Hirschielder curve, whereas the '=,~ state was
fitted satisfactorily with a Morse curve. The constants

2 H, M. Hulburt and J. O. Hirschiclder, J. Chem. Phys. 9,
61 (1941).
22 R. S. Mulliken, Revs. Modern Phys. 4, 1 (1932).
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for thesc curves arc also given in Table VIIT, and the
curves themselves are shown dashed in Fig. 2. The
A32,* state (based on Herzberg's assignment) could
not he fitted over its whole range by any of the usual
empirical functions, but a Morse function could be
adjusted to give an excellent fit from 1.74 to 2.26 A,
and extrapolation to 2.5 A should be rcliable.-The cqua-
tion for this curve is '

V (r) =0.7267 {exp[— 10.58 (r— 1.599) ]
—2 exp[—5.29(r—1.599) J}ev,
1L7AA<r<25A. (G)
RELATIONS AMONG THE STATES OF O,

A number of approximate but uscful relations among
the eighteen states of Oz can be obtained from simple
quantuni-mechanical considerations. These relations
can be used to caleulate the Jong-range “tails” of the
curves for the remaining twelve states from the results
~for the six known bound states discussed in the pre-
ccdm;2 sections. The results should be fairly rcliable

———— —since theory—is_used_only_Lc tc&)(_zgl_r(latlons among

encrgies and not .to calculate directly the energies
" themselves. Only the p electrons are considered. Similar
procedures seemed to work well for Ng' and NO,2 and
we might thcrdore expect it to give good results for
Q. as well. :
- Since we are interested primarily in the long-range
“tails” of the potential energy curves, a correlation
among the energies of the various states should. pre-
‘sumably be developed by a valence-bond (VB) method,
~which is generally the best simple method ‘at large
internuclear distances,® and which gives a description
_of the molecular states in' terms of atomic orbitals
(AO’s). This involves essentially an electron pairing
procedure, which receives its simplest formulation in
the perfect pairing dpproximation,®
V=" 3Ty 275 —
orbitals with orbitals with
paired spins  nonpaired spins

27 i, (7
orbitals with
parallel spins
 where V is the interaction energy and J; is the ex-
change integral for two electrons in the atomic orbitals

TasLr VIIL Parameters of empirical functions which give best
fit for the bound states of Os..

V=D,[(1—¢=)4exe = (1+bx} ~1]; x=28(r—re) /1.

State D, (ev)  7.(A) 28 ¢ b
1A, 4,230 1.2155 3.4203 0.080501 2.6976
1yt ©3.576  1.2268 3.5637 0.098629 2.9187
‘3 - 0.6653 1.597  4.8841 0 L.

'3Au 0.9154 1.4804 5.4637 0.021247 1.3282

23.(3) C. A. Coulson, Valence (Oxford Umvusltv Press, New
* York, 1952), pp. 147-151; (h) yring, Walter, and Kimball,
Ou(m!um Chemastry (John Wll(,y & Sons, Tnc., New York, 1944),
pp. 214, 241,

# Reference 23a, pp- 166-184.

V)= Ter Ju— T
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Tapre IX. Simple MO description of the Jower states of Na
logc}thcr with their VB energy expressions.

MO's X1z =t
0’:1(2/’:-,1—2/’::2) T
7"ﬂ~(2f’:|“2/":‘~') T T T
w5 (2py1—2pu2) 1 T
T (2/’z|+2f7:z) T l T T T
7ru+ (2/7u|+2/’1/2) T l ) T l T T
0’0(2/711_*_2/):2) T l T l T l T
VB energy expres- Jart Ty Joxt Ty Jaz—Tyy —Tzz—~Tyy

ston ~J zz T Jzz “Jzz T Jzz

1 and 7. In the forcgoing equation terms involving the
coulomb integrals have been omitted, since the cou-
lombic interaction between neutral atoms is very small
at large internuclear separations. On the other hand,
there are many advantages to a molecular orbital
(MO) -formulation of the problem, since the electronic
configurations of molecular states have a very clear and
simple description in, MO language. This is an important
consideration for Op with its eighteen states. We there-

S~ fore try to cstablish-a-simple-connection-between_the_

MO and AO descriptions, such that we can describe

the electron configurations in MO language, and from .

this description write down VB expressions for the
interaction energies. Such a connection on a simple
level is not trivial, since the MO and the VB or AO
descriptions on this level are basically different, inas-
much as the MO description is in terms of single elec-
trons and the AO dcscrlptlon is in terms of pairs of

~electrons. Of course, in their higher approximations the

two descriptions become equivalent,®? but we are seek-
ing to avoid as much as possible the complications of
higher approximations. A further advantage of a simple
connection between the MO and the AO descriptions
is that it suggests modifications and extensions of the
perfect pairing apprommatlon which are neccssary for

‘S0Ime Cases.

Let us first consider a case for which both the VB and
the MO descriptions are clear cut, and for which the
perfect pairing approximation, Eq. (7), is known to

. lead to reliable results. The interaction between two 4S

nitrogen atoms, N (1s)2(2s5)%(2p:) (2py) (2p.), leads to
four possible molecular states, X 'Z,*, 4 °Z,*, 52,1,
and 72,*. When two N atoms approach each other, the
three electrons in the $ orbitals of each atom can be
paired together in various ways: pairing all three leads
to the X *Z,* state of Ny; pairing two electrons of one
atom with two of the other atom and antipairing the
third electrons (spins parallel) leads to the A43Z.*
state; and so'on until the 72, state results from all the
p clectrons being antipaired. According to Eq. (7)
the interaction energies are therefore

V(’E) = Jx;;;+ Jyy+ chz j:zz+2jlmy
2= Jaz, etc. (see Table IX), (8)

/
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TasLe X. Simple MO description of the lower states of O together with VB energy expressions.

Ay -

MO's X 320— lA, 1274- A 3zu+

ay (2p31;2[’:2) -

Ty (2Pz|"2/7:2) T l T l T T l

wot (2pyr—2pys) i Tl T ! T 1 ]

w0 (2pa4-2p2) [ | I S 1 T 1

T (2pn+2py2) T 1 T [ T Tl T 1

05 (2p21+2p22) T ! T 1 | SR N Tl Tl
VB energy expression Joo=Tpy Jez—Jyy Jzz—=Jyy J22=3Jyy J22—3JTyy J22—=3Ty,

where the x axis lies along the internuclear axis, and
by symmetry J..#J,,=J.. In Eq. (8), cross terms
such as J,, have been neglected. The reason for doing
so is that these terms are smaller than the diagonal

terms such as J.,. The exchange term, J, consists of a .

large number of integrals but, in general, the value.of
J is roughly proportlonal to the overlap integral®
which by symmetry is zero for the cross terms.

It is clear from ‘Eq. (8) that a knowledge of any two
of the states enables one to solvé for J,, and J,, and

from these the energies of the other two states can be.

" calculated. This has been done for N, with excellent
tesults.!

It is worth mentnomng that a mote rigorous scheme
would include terms like J., in Eq. (8). We have not
.done so sincé there are not at-present sufficient data to

except for a normalization factor, to 2 VB wave func-
tion in terms of AQ’s, which is

I 21’1/1‘1 2py,0 |‘ (10)

These simple relations serve as a guide for the more
complicated case of Q.. From the MO description of the
various molecular states which arise from the interac-
tion of ground state atoms, one should be able to write.
down the VB expressions for the, interaction energies.
Since the simple VB description yields results which are

. in general superior to the simple MO results at large

internuclear separations, such a proceduré should yield
valuable results, as it does for Ns.

The foregoing procedure cannot be applied to O,
without modification and extension. To illustrate why

- this is so, we consider the six lowest states of O, whose

evaluate the additional terms which would arise. The.

. inclusion of these additional terms should serve to make
- the agreement with experiment even better. The re-

sults obtained with .the present scheme justify this -

approach—at least until more experimental data
become available.

The 51mp1e MO descnptxon of these four states of
N, is given in Table IX, together with the VB energy
" éxpressions. The MO’s, o,, mut, 7™, x;t, m, and o, 1
-are also shown as approximated by a linear combina-

tion of atomic orbitals (LCAO), and it is evident from".
symmetry that m* and #;* form two degenerate sets.

The relation between the MO and VB descriptions is
clear from- Table IX: a pair of electrons in a bonding
"MO leads to a contribution of 4+.J according to the VB
perfect pairing approximation, whereas the combina-
tion of one electron in a bonding MO plus another
“ electron of the same spin in the corresponding anti-
bonding MO leads to a contribution of
point has been previously pointed out in some detail

— J. This latter .

by Linnett,® who showed that the simple MO wave

function for two ‘such electrons, whlch in Slater deter-
-minants is

9

is entirely équivﬁlent in the LCAO approximation,

| mte .1r,,+oi 1,

TThese MO’s are also often denoted as 0211,, *2py, 72p:,
*2py, * 21),, and ¢*2p;, respectively. , )

simple MO description is given in Table X. In this

simple description there are a number of different elec-

tron distributions for the !A,, 1Z,%, 1Z,~, %A, and 32+ :
states which are degenerate with the ones given in the
table. The MO wave functions for these states there-
fore have to be represented by linear combinations of’
the wave functions associated with the different elec-
tron distributions. Allowance for the use of linear
combinations will lead to splitting, causing, for ex-
ample, the 'Z,* state to have a different energy than
either the A, or the 32, state. This splitting might be
looked on as a second-order effect, and it is not included
in the present approximation. -Such splitting.may be

fairly large, but we expect that its effects would not be

greater in any case than the énergy difference between -
the 3Z,~ and 1Z,* states. Neglecting this effect, then; we
see from Table X that there are three electron configura-
tions. which did not occur in Na. These configurations
are .

LA A

| (11)
= 1 0 1.
4) (B (0

The method of treating these electrons from-a VB
viewpoint is suggested by the work of Linnett.® Con-
sider the arrangement (A). As mentioned previously,
Linnett has shown that two electrons with a spin, of
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- which onc is in a bonding =, MO and the other is in an
antibonding #, MO, can be considered equivalent
to one clectron with  spin in each scparate AO. If a
third clectron with 8 spin is now added to the bonding
. MO, Linnett has shown that the situation can still
‘be described as the two electrons with « spin occupying
,'A() s and the one clectron with g8 spm occupying the
7« MO. According to Eq. (7) the pair of electrons in
the AQ’s contribute an amount — J,,.to the interac-
- tion energy. The electron in the bonding m, MO forms a
" one-electron bond, and the strength of such a bond is
" usually about one-half the strength of the correspond-
ing two-electron bond.® Thus the total contribution to

the interaction energy from the “three-electron bond’ .

- of ‘configuration (A) is about —3%J,,.1 The “three-
electron bond” energy has been dlscusscd in the carlier
paper? on NO, where it was shown that the results
obtained on this basis are quite reasonable, and con-
sistent with the meager spectroscopic data and with
the large difference in dissociation energy betwecn NO

~and NO+.

Consider now the arrangement (B). It_is easy to

—+-—show_by _the rules of determinants that, within ‘the
‘ LCAO approximation, the simple MO wave function™

I,"rr,,*a T B 7ra+a » L | ( 12)

1 Since the arguments used to obtain this value are at best

- .heuristic, the referees have suggested that a more detailed com-

ment should be made. Consider the wave function | aex b
(a+b)B- - -ma nB |, where the functions g, b, ¢, etc., are assumed
normalized on the respective atoms. This wave functlon corre-
* sponds to the “three-electron bond” involving the AO’s a and b,
"which are associated with the like atoms A and. B. The terms in
the interaction energy arising from this three-electron bond are

Vs= —(ab ab) u+(ab) u,

.whcre we have as usual neglected the multiple exchange and 3

coulomb integrals, and where-

(ab ab)p= /(axazbau )H(b1020364 <)dr, .

(ab)H=/(ala/2baCA' +=)H (arbabscs- - )dr.

We now want to-relate this result to the energies of the one-
electron bond and of the repulsive two-electron bond with parallel
* spins. The wave. function for the repulsive two-electron bond be-
tween ¢ and b is | o ba- - -nf8 |, and leads to a contnbutlon to the
interaction energy of .

- (ab ab)Hy

.which we have set equal to —Jyy. Similarly, the wave function
for the one-electron bond between @ and b is | (a+b)a--
and leads to a contribution to the interaction energy of

Vl‘:’(ab)liy

which we have assumed to have half the strength of a normal
attractive two-electron bond, o ‘$J,,. The interaction energy for
the three-electron bond is therefore

Va= V2+V1= —‘%Jw

Thus the value we have used in this paper is consistent with our

assumptlon regarding the strength of ‘the one-electron bond. In a .

similar manner it can be shown that the configuration (C) of
(11) leads to an interaction energy of — ,J,,, . .

4( Z‘III'J)_

521

is entirely equivalent, except for a normalizing factor,

to the simple VB bond wave function

N2 208 e 2081 (13)

According to (13), we can think of the two electrons of
a spin on the diffcrent atoms contributing an energy of
— Ju, and similarly for the electrons of B spin, for a
total contribution of --2] Alterna.mvely, (13) can be
mterprcted as two-electrons on cach atom having their
spins internally palred and hencé randomly ‘oriented

* (nonpaired) with reSpect to .the. spins of the two

electrons on-the other atom. According.to Eq. (7), this
interpretation - léads to an energy contribution of
2J .y, as.before. :

Finally, thé arrangement’ (C) can also be treated by -
the Linnett procedure, and is obv1ously equivalent to
one electron with o spin in each AO plus one electron
with 8 spin in the antibonding m, MO. The two electrons
in the AO’s contribute,— J,, to the energy, but the
third- electron in. the antibonding MO contributes

2 J,,. This has to be so'if the conﬁguratlon

nB |,

Lt T .
—_——— (1)
mE T .
is to give a riet contribution of — J, w as dictated by the

‘perfect pairing relation. The one electron in the m,
. MO has been assumed to contribute % J,,, so that the

electron in the m, MO must contribute to —3.J, to
maké the sum be — Jy,. Thus the total contribution
from configuration (C) is —%.J,,. This can also be seen
in an even simpler -way. Configuration (C) is equiva-
lent to (B) with one electron removed from a bonding
MO and hence the energy of (C) is —2Jp— (+3T,) =

."‘?Jw

- With these rules, then, we can 1mmedlately write
down thc energy expressions for the six lowest states of

Qg These are given in Table X, where we have again

set Jy=J.. To the approximation of neglecting
splitting, it is seen that the six states break up into two
sets of three states each. This is in approximate agree-
ment with. experiment, as can be seen in Fig. 2.

“The foregoing discussion ‘suggests that the whole
method can- be formally treated completely on the
basis of single electrons, and all reference to electron
pairs eliminated. If we assign a contribution to the
interaction energy of +3%J for a single electron in a
bonding MO, and —%J for a single electron in an
antibonding: MO the correct VB energy expression
can be obtained simply by adding up the contribu-
tions of all the electrons. It seems Somewhat para-
doxical that an energy expression for electron pairing
can be written down in terms of single electron energies,
but reference to the.preceding-discussion and. to Tables
IX and X shows the validity of the procedure. This
result greatly simplifies the problem of writing down
energy expressions for large numbers of complicated
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Tanre XI. Electronic configurations and energy expressions for the upper states of Q..

State Elcctrqnic configuration (MO) Tnergy (VB) Energy in terms of 14, and %A,
3 o) (my7) 2, oy
‘g: , Z:: g"..+;2gﬂu‘;:1ra:((z;ou EB)) } =iz Jw) =3V (40
S, oo (my ) 2m, (@) g (@) g~ (@) o (o) :
31, o5 (7ru+)27"u_ (‘1) 7"0+ (a)"ro‘ (a)au gﬂ) _%(-’z:+3]vv) _%V(lAn) + V(sAu)

- I, o2 (hit)2ry (@) gt (B)mg~ {a)od(8)
27 o(a) (mt)2 (my ) 2™ (@) my~ (@) o (@)
Tt (00 (e ey (@ (B ) bt —2VEa)HVEA)
13+ o ()2 (") %02 _ —2(Jza—JTyy) -2V (14,)
5A, - g (a) (7"u+)zﬂ’u_ (a) (’"'a+)z"'a_ (a) Ty (a) 1
S : 70 (@) (o (o) mo* () (4) o (o) } o ({::+3Juu) =3V (18,) +2V (%A.)
D atrt (@) (@) wt (a) (@) ol —2(JoxtT ) 4V (1A +2V (A,
511, oy (@) (mu ) tmy () gyt (oz)7r,,‘\(cz')¢7u2 —3(5T 2437 ) —3V (1A +2V (3A.)

molecular electronic states, and we believe it combines
the best features of both the MO and VB theories -in
their simplest forms. . :
The simple MO description of the other twelve
states of Oy is given in Table XI, together with the
energy expressions obtained by the above scheme. As

_in Table X, we have given only one configuration for

each state, although several configurations are.possible

for many of the states. As mentioned previously; this

will lead to splitting so that the states shown as de-

generate in Table XI will actually be split, although
- we do not believe:such splitting should be greater than
that observed for the three lowest states of Oq.

It is now possible to write expressions for the energies

‘of all the states in Table XI in terms of the cnergies of
. any two other states.- We choose the '4, and 3A,, states -

since these are the intermediate ones in the two groups

of known states. The resulting expressions are given in-
- the final column of Tabl¢ XI. The cnergies of these
.different states in the range from 1.8 to 2.5 A can be
‘represented as follows: '

' My, M,V (r) =339 ¢7357" ev; ~(19)

5T1,, *T1,, 'T,: V (7) =717 €735 ev, (16)

- 55,V (r) = 2114 357 ev, (17)
13,4V (r) =1358 ¢35 ev, (.18A) '

SIL,: V (r) = 2455 ¢ ev, (19)

83, 3Z,7F: V(r)'= 1057 &350 ev, (20)

B0, 8E PV (1) = 1433 ¢35 ev. (21)

‘These curves are shown in Fig. 2 as dashed lines. They

can, of course, be extrapolated to larger distances than
2.5 A, but at the expense of increased uncertainty in
their values.

The only expcrimental information on any of these

~curves comes from an analysis of predissociation effects

in the B 3%,~ curve. Wilkinson and Mulliken® find that
there is certainly predissociation at the o'=12 level of

the B 32, curve, and it is probable that predissociation
takes place in the whole range from v'=4 to v'=12.
According to the correlation rules and the selection
rules for predissociation,® only the *IL, state can pre-
dissociate the BT, state strongly. Wilkinson and
Mulliken suggest that the 3, curve predissociates the

.. B3Z,~ curve by crossing’it to the left of the minimum

at »'=12. They further suggest that the °II, curve comes
close to the 332, curve most of the way up the left-
hand side of the curve, and that this could explain the
probable predissociation in all levels from =4 to

‘o'=12. Our calculated curve for the ’II, state rises a
little too rapidly to pass.entirely on the left-hand side

of the B2, curve from the minimum to o'=12.
Extrapolation of our curve inward.indicates that it
cuts the B *Z,~ not only at about o' =12, but also right
at the minimum. Wilkinson and Mulliken rule out the
possibility of a double crossing of the B2, curve by
the I, curve, once at the minimum and once at
v'=12, because of the absence of any observed pre-
dissociation cffects at the's’=0 and v’=1 levels: It'is
thercfore probable that our °I, curve is slightly too

‘high around the region of the minimum of the B3Z,~

curve, but this is easily explained by the approximations
we have made.§ Allowance for' the effect of splitting
would lower our *I, curve, and inclusion of.the cou-

% Reference 3, Chap. VII, Sec. 2.

§ Nate added in proof —After this article had been submitted
for publication, Dr. Wilkinson called our attention-to Dr. P. K.
Carroll's work on predissociation in the Schumann-Runge bands
[Astrophys.J. 129, 794 (1959) ]. Carroll reports a predissociation
at o' =4 which apparently is stronger than the predissociation at

" ¢'=12. He suggests that this may be caused by the I, curve

crossing on the right-hand side of the 3%~ curve at v’ =4. If this
is so, then it is difficult to explain the other predissociations
ranging from @’ =4 up to o' =12, especially the fact that the prob-
ability for predissociation appears to have two maxima, one at.
o' =4 and another at v'=11 with a minimum at »'=9. Carroll.
has also found abnormally wide widths for the rotational lines in
the 2-0 and 1-0 bands of the Schumann-Runge bands. He feels -
that this is due to a blending of finc structure components. Our
explanation would be that the *JT, curve crosses at the bottom of
the *2,~ curve, as is suggested by our calculations, and then risecs

‘along the left-hand branch as Wilkinson and Mulliken suggest.
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lombic and overlap integrals dropped from Eq. (7)
would cause it to rise fairly sharply at small inter-
nuclear separations. If we usc the crossing point at

cv'=12 (V=1.801 ev, r=1.342 A) togcther with our

values for the 31, curve at large distances, the equa-
tion :

- V(r)=17.61exp(—0:8224 r?) ev; o
- 134A<r<25A (22)

gives an excellent fit. Equation (22) is not entirely
correct, however, since it still crosses the B 3Z,~ curve
at the minimum, and it is entirely probable that it
should pass beneath the minimum. Further evidence
for this is the apparent observation by Wilkinson and
Mulliken of a weak continuum under the Schumann-
Runge bands which may be attributable to the transi-
tion L, «—*2,~. -

Wilkinson and Mulliken also rule out the crossing of

_the B 3Z,~ curve by the *I1, curve at about v'=3 on the
right-hand side of the minimum, a suggestion made by
Flory® to explain certain photochemical effects. They

_ _suggest that the photochemical results can be ex-.

plained by a “forbidden” predissociation near v’ =33

" by any of the 8Z,~, I, or I, curves. Our results indi-

cate that the 52, curve crosses the B3I, curve right
atv'=33. ' o

Our results, therefore, are at least not inconsistent
with the meager experimental information that is
available on the repulsive states which dissociate to

" ground state atoms. It can further be shown that they

are consistent with the previously calculated® NO
energies, on the assumption that the exchange integrals
J are about the same for NO and Os. Since the energy
for the 2IT ground state of NO is V (°II, NO) = Jro+3 J 4y,
and that -for the 3A, state of Oy is V(?A,, O2) = Jp—

- 3J,, we-can calculate J,, and J,, as a function of dis-
tance from the known energics and use the values to

calculate the energy of the 'A, state of O;. The energies
of the A, and ?A, states in turn determine the energies

of all the other O states, as has been shown in Table -

XI. The 'A, energies calculated in this way agree
with the values of Table VIII quite well. The deviation
is 0.010 ev at r=1.8 A, rises to 0.041 ev at r=2.1 A,
and falls to 0.018 ev at #r=2.6 A. These deviations
propagate directly to the other O, states as shown by
the last -column of Table XI. The agrcement is cer-
tainly within the uncertainty caused by our neglect’ of
splitting. :
' 0:—0, INTERACTIONS

“The modified perfect pairing scheme describes inter-
actions between molecules as just the sums of the
.interactions between the constituent atoms, so that we
-can calculate approximately the long-range Or—O
interaction from the results of the preceding sections.

%P_ J. Flory, J. Chem. Phys. 4, 23 (1936).

* /Ea(26) plus dispersion

 F1e. 3. Average Viev)
0,—Q:interaction as
obtained by different
methods. - 0.5t . ‘

vibrational
reloxotion

. _ viscosity

ob - —_— ]

25 . 30 35
R (A)

Similar procedures worked well for the Ny—N, and
N3O, interactions.!? Consider the interaction of an
oxygen atom, O(2p.) (2p,)%(24.), with another oxygen
atom, O(2¢.)(2py) (2p.)%, each of which is bound to
another oxygen to form two oxygen molecules. The

Tinteraction of these two-configurations will-tead-to-the— —

lowest energy. The electron spins on these two atoms
are uncotrelated (nonpaired), and by the perfect
pairing relation the net interaction energy between
the two atoms is

V(O 0)=—3T0=3(2T0) —32J0) = =35 Jez— 23|

' (23)
or from Table X, - '

V(0---0)=—3[TV(8) =5V (A)], - (24)

which can be represented by the expréssion

V(0---0)=812 ¢ ey, 18A<r<25A.  (25) .

The 0,—O; interactions are obtained by adding up
all the four pertinent O- - -O interactions, each of which
is given by Eq. (25) with the value of r appropriate for
the atom-atom distance. The dependence of the
0-—O: interaction on orientation is thus given im-
plicitly by the dependence of the atom-atom distances
on the molecular orientations.

In many cases it is useful to have the total O;—O;
interaction energy averaged over all orientations. The

|| The referee has pointed out that the interaction cnergy calcu-
Jated .in this way does not take into account the fact that the
values of Jzx and J,, depend on the rclative orientation of the
two Oz molecules, .as well as the fact that at certain orientations
the cross terms such as J,, become large. Consideration of ex-
tremes of orientations shows that these effects introduce a max-
imum variation with orientation of about 40% into Eqs. (23)-
(25). Neglect of this variation is thus cousistent with the other
approximations involved, such as neglect of multiple exchange
integrals [F. A. Mason and J. O. Hirschfclder, J. Chem. Phys.
26, 756 (1957)7], inasmuch as the J’s are really treated as dis-
posable parameters to be determined from experiment. Further-
more, the final averaging over all molccular orientations to obtain
Eq. (20) also tends to compensate the error.
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method of averaging has alrcady been given in con-
nection with the N,—N, interaction,! and leads to the
result

(V(R))=5580 ¢ cv, 1.93A<r<2.70A,  (26)

where R is the distance between the celigers of mass of°

the molecules. This result can be compared with
similar potential _encrgies obtained from analysis

" of measurements of high-temperature gas viscosity?

and of vibrational relaxation times’ The viscosity
result has been given as an exp-six potential, and the
vibrational relaxation result as a Morse potential. The
comparison is shown in Fig. 3. Since Eq. (26) is the

* result of essentially only a first-order perturbation calcu-

lation, it is of interest to add on the second-order

-perturbation -energy, the London dispersion energy,

which is given approximately as
(V(dis) )=—3(a?I/R) = — (24.0/R% ev, Rin A,
' “(2n)

where & is the average polarizability of an O, molecule

~ and [ its ionization potential. The sum of Eqs. (26),
- and (27) is also shown in Fig. 3. The agreement among
.the potentials, calculated in three c

pletely inde-
pendent ways, is excellent. The fact that the potential
from vibrational relaxation measurements seems high

. is'to be expected from the approximations made in the:

theory of vibrational relaxation. This theory is in effect
a one-dimensional treatment involving the end-to-end
miolecular configuration.?” Since this configuration leads
to the largest interaction energy of any configuration,
the difference shown in Fig. 3 is not unexpected.

SUMMARY

- Potential energy curves for the interactions between -
“two ground state' O-atoms have been calculated from
spectroscopic data and from approximate quantum-

mechanical relations. The results obtained from
spectroscopic data (RKR method) are given in
Tables I-VI for the X 3%, 1A,, 1Z,+, A, A 33, and

% (a) E. Bauer, J. Chem. Phys. 23, 1087 (1955); (b) M.

Salkoff and E. Bauer, ébid. 29, 26 (1958).

12, states of O, The long-range “tails” of the 1A,
1Zgt, and A, curves were fitted with Hulburt-Hirsch-
felder functions, whereas the !Z,~ curve was best fitted
with a Morse function. The constants for these em-
pirical functions are given in Table VIII. The A Dy
curve was found to be best fitted at large r by Eq. (6),

- and the X 3Z,~ curve at large r was represented by

Eq. (5). Relations among the eighteen states of O,
dissociating to ground state atoms have been obtained
by a modified perfect pairing approximation. This is
based on a description of electronic configurations in
terms of a combination of AO’s and MO’s which leads
to simple rules for writing down a VB energy expres-
sion, given a simple MO description of an electronic
state. These relations yield results for the repulsive
states of O; which have been represented by Egs. (15)
through (21). The repulsive states have been checked
against predissociation effects observed in the B3z,
state, and are in agreement with the observations. The
curve for the B3Z,~.state, the upper state of the
Schumann-Runge bands, has been calculated by the
RKR method with the results shown in Table VIL. A
partial check has also been made by calculating the O,
curves in terms of the known curves for the X 2T

,state of NO and the 3A, state of Oy, with satisfactory

agreement.
An O0;—O0; potential has been genefated from the
O—O potentials in a manner similar to that used for

- the Ny—N, and N,—O; potentials obtained pre-

viously.!? The results are consistent with other po-
tentials obtained from different experimental sources.
It is difficult to assess the absolute accuracy of all the
results obtained. ‘However, they are all internally
consistent and in agreement. with the limited available

experimental data.
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