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Potential energy curves for 0-0 interactions corresponding to the X 	 '", 'A,,, A	 1,,—, 
and B'^, states of 02 ha9c been calculatec] from spectroscopic data by the Rydberg-Kiein-Rees method 
Curves f Th	 rnaidiii 'tWëls(atcsof-0dissociating-to-ground_statcatomshavebccn_o1sinedf 
relations derived from approximate quantum-mechanical calculations, and checked against the meager 
experimental information available. Two semi-independent calculations have been made, and arc in good 
agreement witb each other. The civantuni-nicchanical relations also lead to an approximate 02-02 inter-
action, which is consistent with interactions derived from vibrational, relaxation times and from high-tern-

•	 perature gas viscosity data. 

INTRODUCTION 

T
HIS is the third in a series of papers dealing with 
the interactions among nitrogen and oxygen atoms 

and molecules. Such interactions are not only of im-
portance in the calculation of transport properties of 
air at high temperatures, but a proper knowledge of 
them may also lead to a better understanding of the 
demistry and physics of the upper atmosphere. Pre-
vious papers have dealt with the interactions between 
nitrogen atoms and molecules' and between oxygen 
and nitrogen.2 The present paper deals with the calcu-
lation of th9 interaction energies between oxygen atoths 
and molecules. 

The most important interactions for the calculation 
of transport properties are those between the ground 
state atoms and molecules. When two ground state 
oxygen atoms ( 3 P) collide, they can follow any one of. 
eightccn potential energy curves, 3 corresponding to the


	

spectroscopic slates	 (2),	 1I.T,	 .	 3^,,±(2), 

	

Ift,, :q f,, i ,	 ,	 51J0, ll,,, and ',

Spectroscopic data arc available on the lowest six 

* 'l'hi ? i'cscarch was supported in part by the National Aero-
nautics ad S]')a.ce Ariministration. 

\r ,nijc:rsic, l'fason, and Lipuincott, J . Chem. Phys. 30, 129 
(1959). 

2 Vanckrslice, Mason, and Maisch, J . Chem. 1.'hys. 31, 738 
(1959). 

C.J'lerrhcrg, Spectra of Dialunic Molecules (1). Van Nostrand 
Company, Inc., Princeton, New Jersey, 1950), p. 32l.

hound states,	 lag, I g+, 1, '&, and Aa,,+, 
as well as on the bOund state, ivhich dissociates 
into a ground state oxygen atom . ( 3P) and an excited 
atom ( 1D) .- Accurate- potential energy curves for these 
states have been calculated by the Rydberg-Klein-

ecs (RKR) method. 4 For the other states dissociating 
to ground state atoms the experimental information is 
meager. Wilkinson and Mdlliken 5 suggest that the 3fl,, 

state predissociates the B state at v'= 12 on the 
left-hand side of the 'minimum of the B Z,r curve. 
Here v' is the vibrational quantum number of the 
B %- state. They also mention the possibility of .a 
"forbidden" predissociation of the B	 state at 
v'=3 by any of the	 111,,, or ll,, •states. This 

"forbidden" predissociation would occur on the right_ 
hand side of the minimum of the B	 curve. 

Simple quantum-mechanical considerations have 
been used to determine relations among the eighteen 
different states of O dissociating to ground state atoths. 
Once the curves for the six bound states, are known, 
'these 'relations enable the "tails" of thc other curves 
1:0 be determined. The curves so calculated 'agree with 
the results ot Wilkinson ai'id Mulliken 011 the predis-

(a) P. Rydbcrg, Z. •Ehysik 73, 376 (1931); (b) 0. Klein, Z. 
Physik 76, 226 (1932); (c) A. L. C. Peas, Proc. 1"Iivs. Soc. (i.on-
don) 59, 998 (1947. ); (ci) Vanclerslicc, Mason, iv[aisch, and 
Lii>nincott, J. Mol. Spectroscopy 3, 17(1959). 

P. G. Wilkinson and R. S . ,Mulliken, Astrophvs. J . 125, 594 
(1957).
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the centrifugal potential term due to rotation (see 
Fig. 1). The two quantities f and g, defined by 

	

f—(3S/OU)K and g--(aS/fiK),	 (2)


are then considered. From Fig. 1 it is easy to see that 

f=J	 dr(rm,,—rm ix),	 (3) 

	

FIG. 1. Graphical	 rmln 
interpretation	 of 
RKR method	 (rmax 

__________________	
g=J	 (OVeff/aIc)dr=4J dr/r2 

'mix	 7mm 

=[(1/rmmn)—(1/rma,)], (4) 

where rmmn. and ar& the classical turning points. 
From these relations it can be seen that a knowledge of 
S— S(U, K) leads to values of f and g and conse-
(iuentiv tn v,lit,e nf a. 	 lrnl a. 	 DV1) 

sociation effects, the only direct experimental checks 
available. A semi-independent calculation of the "tails," 
based on the X2H curve of NO and one 02. curve, is 
also in good agreement. These relations have been 
derived by a modified perfect pairing approximation, 
previously used 1 '2 for N2 and NO. This modified pairing 
scheme affords a description in terms of a combination 
of molecular orbital and valence-bond theory, some-
what along the.lines suggested by Linnett.6 The descrip-
tion further leads to simple relations involving mole-
cules, so that an 02-02 potential can be obtained 
from results on the 0-0 interactions. This 02-02 

BOUND STATES OF 02 

The potential energy curves for the bound states 
', j', "Zr, A and B r were 

obtained by the RKR method. 4 Although this method 
has been described in considerable detail in earlier 
publications, 1.24d it has not been emphasized that the 
method is quite sensitive to errors in the experimental 
data in the region near the dissociation limit. To dis-
cuss this point, it will suffice here to give a graphical 

:interpretation of the method which follows somewhat 
along the lines given previously.4" The purpose of the 
method is to obtain values for the classical turning 
points of the vibrational motion for a given total 
energy U. The method is formulated in terms of the 
area 2S,- 'which is enclosed between the lines of con-
stant energy U and the curve of effective potential 
energy V,ff(i'),

V011(r) = V ( r)+K/r2,	 ( 1)


where V(r) is the actual potential energy and K/r2 is 

J . W. Linnett, J . Chem. Soc. 1956, 275. 
M. SalkofT and E. Baucr, J . chem. Phys. 30, 1614 (1959). 

-i -	 "J 	 mix Lfl.t 'max .	 IIIULUVU 

expresses S in terms of the vibrational and rotational 
constants obtained from analysis of spectroscopic data. 
Hence once the spectroscopic results are known in a 
region around U, the function S and consequently 
rrnmn and rma. can be calculated. The method implies 
that the data are known up to U, since Vef f is assumed 
known up to U in the integration in Eq. (4). This 
means that the curve has to be built up from the 
bottom using the spectroscopic data appropriate in each 
energy region. 

It is obvious from the foregoing presentation that! 
and g are very sensitive to the energy near the dissocia-

potential is in agreement with other potentials ob- 	 IC 
tamed from analysis of . high-temperature viscosity 
data2 and from analysis of vibrational relaxation time 
data.7

V(ev)
- A3 00 —

1.0	 15	 2.0	 2,5

r(A) 

FIG. 2. Summary of 0-0 interactions. The solid lines have 
been calculated by the RKR method. The curve numbering is: 
(1) 'H, and 'II,,; (2) T 0 ,	 and 'rIg; (3) b	 and '; (4) I'4'; (5)	 and %; () 5+; (7) 'H,1.
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'TABLE I. Potential energy of the X	 state of O,. 

v	 V(cm')	 rmn(A)	 rmjn(A).	 V(ev) 

0
	

787.2	 .262
	

1.158	 .09761 
1
	

2 344
	 .307
	

1.126	 .2907 
2
	

3 878
	

340
	

1.106	 • 4809 

3
	

5 387	 .370
	

1.091	 .6680 
4
	

6 873	 .397
	

1.078
	 .8523 

5
	

8 337	 .422
	

1.067	 .0338 

6
	

9 778	 .445
	

1.057	 .2 125 
7
	

11 196	 • 469
	

1.049	 • 3883 
8
	

12 591	 .491
	

1.041	 .5613 
9	 13 963	 1.513	 1.034	 1.7.514 

10	 15 313	 1.534	 1.027	 1.8988 
11	 16 640	 1.556	 1.022	 2.0634 
12	 17 945	 1.577	 1.016	 2.2252 
13	 19 227	 1.598	 1.011	 2.3841 
14	 20 486	 1.619	 1.006	 2.5403 
15	 21 722	 .	 1.641	 1.002	 2.6935 
16	 22 934	 1.662	 0.997	 2.8438 
17	 24 122	 1.683	 0.993	 2.9911 
18	 25 287	 1.704	 0.989	 3.1356 
19	 26429	 1.725	 0.985	 3.2772 
20	 27 546	 1.747	 0.982	 3.4157 
21	 28 639	 1.768	 0.979	 3.5512 

Experimental data from references 8-12.	 - - 

tion limit, since small changes in U or sc give large 
changes in S there. Any errors in the experimental data 
or inaccuracies in the equations used to fit the data will 
cause a large error in r. This effect can be seen in the 
calculated curve for the . B ^,r state (see Table VII 
and Fig. 2), in which the, repulsive side of the curve 
has a positive slope near the dissociation limit. Such a 
situation does not seem to have occurred before, proba-
bly because previous work has not been so close to the 
dissociation limit. 

The results obtained for the bound states by the 
RKR thethod are given in Tables . I-Vu, and the 
actual.curves are 'shown as the solid lines in Fig. 2. 
'The experimental data were obtained from the follow-
ing sources: Herzberg, aa.o l3roida and Gaydon,85' 
Babcock and Herzberg,'2 Lochte-Holtgreven and• 
Dieke, 1' Feast,'2 Herzberg and Herzberg, 13 Hornbeck 

TABLE II. Potential energy of the 'A5 state of O2' 

v	 V(cm') Ymaa (A) rm,n	 (A)	 V (ev)	 T.+V (ev) 

0	 751.4	 1.272	 1.166	 0.09318	 1.0750 
1	 2235	 1.319	 1.134'	 0.2771	 1.2589 

Experimental data from reference 13. 
l T5 is th energy difference between the bottom of the potential curve for 

the state in question. and the bottom of the curve for the XZQ . state. 

8 (a) G. Herzberg, Can. J . Phys. 30, 185 (1952) (b) H. P. 
Broida and A. G. Gaydon, Proc. Roy. Soc. (LondonS A222, 181 
(1954). 

G. Herzberg, Can. J. Phys. 31,. 657 (1953). 
'°H. D. Babcock and L. Herzherg, Astrophys. J . 108, 167 

(1948).	 - 
" W. Lochte-Holtgreven and G. H. Dieke, Ann. Physik 3, 937 

(1929).. 
'2 M. W. Feast, Proc. Phys. Soc. (London) A63, 549 (1950). 
' 3 L. Herzbcrg and G. Herzberg, Astrophys. J . 105, 353 (1947).

TABLE III. Potential energy of the 'Z state of O,.a 

v V(cm'') Ymfla (A)	 r,,,	 A) V (ev) T,+V (cv) 

0 712.9 1.285 1.176 . 0.08840 '1.7245 
1 2118 1.334 1.144 . 0.2626 .1.8987 
2 3495 1.371 1.123 0.4333 2.0694 
3 4843 1.403 1.107 0.6006 2.2367 

4 6164 1.432 1.094 0.7643 2.4004 

a Experimental data Iron reference 10 

and Hopfield,' 4 Pillow,15 Brix and Herzberg,' Knauss 
and Ballard,'7 and Herman.'8 

There is some uncertainty in the numbering of the 
vibrational levels of the A and states. 
Herzberg9 has assumed that the first measured band in 
the	 system is the 1-0 band and that the

first diffuse band observed by Herman' 8 at 2913 A is 
the 0-0 band of the.	 -r system. Broida and 
Gaydon,85 on the basis o1 their more recent experimental 
work on the oxygen afterglow, have concluded that 
llerzbergs yibtiOnal assignments for the A 3^ U state 
should be increased by one unit. If Heb'ñuñibè 
ing is used for these 'states, the 	 curve lies below

the A+ curve over the entire region covered in this 
calculation. The 'r curve lies below both at large 
values of r, but crosses the' ' curve at r= 1.7 18 A 
and the A 3 U curve at r= 1.628 A. This crossing is in 
disagreement with the conclusions of Moffitt 19 and of 
Fumi and Parr, 2° who have calculated that the Zu 

curve lies below the curve over the whole region. As 
pointed out by Herzberg, a shift of two units in the 
numbering of.. the "r vibrational bands would lower. 
the' curve below the other two. On 'the other hand, 
the theoretical foundations of the electronic structure 
calculations are not so well established that the results 
of Moffitt and of Fumi and Parr can be taken as com-
pletely reliable. However, since there appears to be 
some experimental evidence that . Herzberg's vibra-

TABLE IV. Potentialenergy of the	 state of O' 

v V(cm') maa (A) rmjn.(A) V (cv) TS+V (cv) 

0	 . 454.0 1.557 1.420 0.05630 4.3543 
1 1323 1.628 1.385 0. 1641 .	 4.4621 
2 2141 1.685 1.363 0.2655 4.5635 
3	 ' 2907 1.739 1.347 0.3605 4.6585 
4 ' ,.	 3621 1.791 . 1.334 0.449! 4.7471 
5 4284 1.844 L323 . 0.5312 4.8292 
6 4895' 1.898 1.312 0.6070 4.9050

Experimental data from references 9 and 18. 

G. A. Hornbeck and H. S. Hopficld, J . Chem. Phys. 17, 982 
(1949).	 . 

"M. E. Pillow, Proc Phys. Soc. (London) A67, 847 (1954). 
1 P. Brix and G. Herzberg, Can. J . Phys. 32, 110 (1954). 
' H. P. Knauss and S. S. Ballard, 1hys. Rev. 48, 796 (1935). 
"L. Herman, Ann. Physik 11, 548 (1939). 
'°W. Moffitt, Proc. Roy. Soc. (London) A210, 224 (1951). 

F. G. Fumi and R. G. Parr, J . Chens. Phys. 21, 1864 (1953). 
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TABLE V. Potential energy of the A	 state of 02. 

v	 V(cnr') rm (A) r,,, 0 (A)	 V (cv)	 T+V (ev) 

(a) Experimental data and vibrational assignments from refer-
ence 8a. 

0	 383.1 1.608 1.461 0.04751 4.5343 
1	 1127 1683 1.421 0.1397 4.6265 
2	 1838 1.743 1.397 0.2279 4.7147 
3	 2513 1.798 1.380 0.3116 4.7984 
4	 3149 1.853 1.365 0.3905 4.8773 
5	 3742 1.908 1.351 0.4640 4.9508 
6	 4284 1.971 1.342 0.5313 5.0181 
7	 4770 2.043 1.334 0.5915 5.0783 
8	 5188 2.133 1.327 0.6433 5.1301 
9	 5524 .2.257 1.322 0.6849 5.1717 

(b) Experimental data from rcfcrcnce Sa and vibrational assign-
ments from reference 8b.

Hirschfclder functions2t at large distances. The Hul-
burt-Hirschfeldcr function appears to be about the 
best empirical potential available, although it does not 
fit the lowest state (X ^) very well. These curves 
for the ' and I^Q+ states are shown as dashed lines 
in Fig. 2. The RKR curves for these states are not 
known over a large enough range of r to furnish a 
stringent test of the fit of the empirical potential 
curves, but an indirect check can be obtained. Accord-
ing to Mullikenn (see also Moffitt'9), the energy split-
tings between the three lowest states, X and 
', should be about equal. Actually, the ratio of the 
splittings is about 1.48 over the known range. If this 
ratio is assumed constant for all values of r, then a 
potential at large r can be calculated for the X 
state from the two empirical potential curves for the 

0 397 1.600 1.454 0.04923 4.4382 
1 !172x 1.669 1.412 0.1453 45343 
2 1916 1.724 1.386 0.2375 4.6265 
3 2627 1.775 1.367 0.3257 4.7147 
4 3302 1.825 1.351 0.4094 4:7984 
5 3938 1.877 1.339 0.4883 4.8773 
6 4530 1.931 1.328 0.5618 4.9508 
7 5073 1.993 1.319 0.6291 5.0181 
8 5559 2.064 1.311 0.6893 5.0783 
9 .5977 2.154 1.305 0.7411 5.1301 
10 6313 2.277 1.300 0.7828 5.1717

These values have been obtained by extrapolation. 	 - 

tional assignments for the A 3 U+ state may be incorrect, 
we have calculated two potential curves for this state, 
one using Herzberg's assignments, sa and one using the 
assignments of Broida and Gaydon. 8" These are given 
in Tables V (a) and (b). In the subsequent discussion, we 
have used the curve based on Herzberg's assignments. 
Our conclusions would he unchanged if the other 
A	 curve were used. 

POTENTIAL CURVES AT LARGE DISTANCES FOR 

BOUND STATES OF 02 

The RKR method gives results only in regions where 
spectroscopic data are available. It can be seen from 
Fig. 2 that the solid RKR lines do not extend to large 
values of r. For many purposes it is necessary to have 
potential curves at the larger distances. 

The .' and '2 curves were fitted by Hulburt-

TABLE VI. Potential energy of the	 state of 

v	 V(cm') fm (A) rmin (A)	 V (ev)	 T+V (cv)

TABLE VII. Potential energy of the B	 state of.O2. 

v	 V(cnr') rma (A) rm,n (A)	 V (cv)	 T+V (cv) 

0 348.2 1.683 1.531 .	 0.04318 6.2187 
1 1036 1.756 1.486 0.1285 6.3040 
2 1701 1.813 1.459 0.2110 6.3865 
3 2343 1.865 1.438 0.2905 6.4660 
4 2960 1.914 1.420 0.3671 6.5426 
5 35,53 1.962 1.405 0.4405 6.6160 
.6 4114 2.009 1.392 0.5101	 . 6.6856 
7	 . 4648 2.057 1.380 0.5764 6.7519 
8 5149 2.112 1.370 0.6384 6.8139 
9 5614 2.172 1.362 0.6961 6.8716 

10 6043 2.235 1.353 0.7493 6.9248 
11 6431 .	 2.302 1.344 0.7975 6.9730 
12 6777 2.386 1.342 0.8403 70158 
13 7077 .	 2.480 1.338 0.8776 ' 7.0531 
.14 7332 '2.588 1.334 0.9092 7.0847 
15 7542 2.721 1.335 0.9352 7.1107 

.16 7711	 . •.872 1.340 -	 0.9561 7.1316 
17 7844 3.055 1.345 0.9726 7.1481 
18 7946 3.270 1.354 0.9853 7.1608 
19 8021 3.536 1.364 0.9946 7.1701 
20 8074 3.900 1.370 1.0012 7.1767 

Experimental data from references 16 and 17. 

and Q+ states. This calculated curve, which can be 
represented by the equation 

V(r) _452 .4e_3,hlsr cv,	 1.7A<r<2.5 A, (5) 

is also shown dashed in Fig. 2. This dashed line joins 
on fairly smoothly to the RKR curve for the ground 
state, thereby giving an indirect check on the other two 
curves. The constants for the Hulburt-Hirschfelder 
curves are given in Table VIII. 

The RKR curves for the	 &, and A3U+ states

are known over' a large enough range of r to test 
rigorously any empirical potential function. The ,, 
state was best represented at large distances by a 
Hulburt-Hirschfelder curve, whereas the 'r state was 
fitted satisfactorily' with a Morse curve. The constants 

0 321.0' 1.678 1.517 0.03980 '4.5880 
1 941.2 1.764 1.476 0.1167 4.6649 
2 1522 1.833 1.452 0.1887 4.7369 
3 2067	 .. 1.899 1.435 0.2563 4.8045 
4 2574 1.964 1.421 0.3191 4.8673 
5 3042 2.030 1.410 0.3772 4.9254 
6 3470 2.098 1.400 0.4303 4.9785

2t H. M. Hulburt and J . 0. HirschIcldcr, j. Chem. Phys. 9, 
61(1941). 

22 R. S. Mulliken, Revs. Modern Phys. 4, 1 (1932). Experimental datfrons reference . 
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for these curves are also given in Table VIII, and the 
curves themselves are shown dashed in Fig. 2. The 
A state (based on Herzbcrg's assignmcnt) could 
not he fitted over its whole range by any of the usual 
empirical functions, but a Morse function could be 
adjusted to give an excellent: fit from 1.74 to 2.26 A, 
and extrapolation to 2.5 A should be rehiable..Thc equa-
tion for this curve is 

V(r) =0.7267 {exp[- i0.58(r- 1.599)] 

-2 cxp[-5.29(r- I .599)]}cv, 

1.74 A<r<2.5 A. (6)

Tinr IX. Simple MO description of the lower statcs of N2

together with their Vii energy expressions. 

MO's	 X 1 2+	 A	 5v1	 7+ 

I 
I I I 

I I 
I	 I I I I 

,r,,(2p2,+2p,) I	 .1 1	 .1 1 1 
o,,(2p,+2p,) I	 I I	 I I	 I I 
VB energy expres- J,+ J,0, J,+ J,,,. J	 - .12 ,, - J- f,,2 

sion +J,., -f,., -J .-J

	

RELATIONS AMONG THE STATES OF 0,	 i and j. In the foregoing equation terms involving the 
A number of approximate hut useful relations among coulomb integrals have been omitted, since the cou-

the eighl:een stat;es of 02 can he obtained from sunpie lonibic interaction between neutral atoms is very small 
quantum-mechanical consiclerat:ions. These relations at large internuclear separations. On the other hand, 
can be used l:o caictilate the long-range "tails ! ' of 1:he there are many advantages to a molecular orbital 
curves for the remaining twelve states from the results (MC)) formulation of the problem, since the electronic 
for the six known hound states discussed in the p re- configurat:ions of molecular states have a very clear and 
ceding sections. The results should he fairly reliable simple description iiMO language. This is an important 

-since -theory_is_usecl_only oobtainrelations among consideration for 02 with its eighteen states. We there-
energies and not to calculate directly the encrgieifrThthlish-a-sifnpie-connec-tion-.between_the 
themselves. Only the p electrons are considered Similar MO and AO descriptions, such that we can describe 
procedures seemed. to work well for N 2' and NO,2 and the electronconfigurations in MO language, and from 
we might therefore expect it to give good results for this description write down VB expressions for the 
02 as well.	 interaction energies. Such a connection on a simple 
- Since we are interested primarily in the long-range level is not trivial, since the MO and the VB or AO 
"tails" of the potential energy curves, a correlation dcscripl:ions on this level are basically different, inas-
among the energies of the various states should pre- much as the MO description is in terms of single elec-
;sumably be developed by a valence-bond (VB) method, trons and the AO description is in terms of pairs of 
which is generally the best simple method at large electrons. Of course, jn their higher approximations the 
internuclear distances,23 and which gives a description two descriptiods becOme equivalent; 23 but we are seek-
of the molecular states in terms of atomic orbitals ing to avoid as much as possible the complications of 
(AO's). This involves essentially an electron pairing higher approximations. A further advantage of a simple 
.procedure, which receives its simplest formulation in cdnnection between the MO and the AO descriptions 
the perfect pairing ifpproximation,24	 is that it suggests modifications and extensions of the 

=	
- 1j	 -	 (

7) perfect pairing approximation which are necessary for 

orbitals with	 orbitals with	 orbitals with	 some cases. 
paired spins	 nonpaircd Spins	 parallel SpilS	 Let us first consider a case for which both the VB and 

the MO descriptions are clear cut, and for which the 
where V is the interaction energy and J is the ex-	 . . 

perfect pairing approximation, Eq. (7), is known to 
change integral for two electrons in the atomic orbitais	 . 

lead to reliable results. The interaction between two 4S 

TABLE VIII. Parameters of empirical functions which give best nitrogeD atoms, N(1s)'(2s)2(2p)(2py)(2p,.), leads to 
fit for the bound states of 02..	 four possible- molecular states, A	 , A	 ,, , 

____________________________________ _______	 - and 7,,+• When two N atoms approach each other, the 
lTD,[(1_e) 2+cxe(1+bx)_11;	 x=2(r-r,)/r,	 three electrons in the p orbitals of each atom can be 

State	 D,(cv) r,(A)	 2	 c	 b	 paired together in various ways: pairing all three leads 
-	 - to the X i)0+ state of N2 ; pairing two electrons of one 

	

4.230 1.2155 3.4203 0.089501 2.6976	 atom with two of the other atom and aitipairing the 
• 3.576	 1.2268 3.5637 0.098629 2.9187 	 third electrons (spins parallel) leads to the 

9	 1.4804 5.4637 0.021247 1.3282 	 st:ate; and soon until the	 state results from all the 

p electrons being antipaired. According to Eq. (7) 

____________	 -	 the interaction energies are therefore 
23 (a) C. A. Coulson, Valence (Oxford University Press, New 

York 1952), Pp. 147-151; (h) Vyring, Walter, and Kimball, 
Quantum Chemistry (John Wiley & Sons, Toe., New Yoi-k, 1944), 
pp. 21.4, 241. 

21 Reference 23a, pp. 166-184.

V(') J+J511+L= J+2J,,5,


V( 3 ) = J+ f2 - J,.,= J, etc. (see Table IX), (8) 
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TABLE X. Simple MO description of the lower states of 02 together with VB energy expressions. 

MO's	 X'	 I	 A 3+ 

(2p,-2p, 2 ) - 

I 1, 1 1 1 1	 1 
I I I I 1 1	 1, I 

L(2p+2p) 1	 I I I I I I I I 
I	 I, I I I I I I I	 .1 1	 1 
I	 1, 1 1 1 1, I I I	 I I	 I 

VB energy expression J—J J-3J	 J-3Jyv

rwhere the x axis lies along the internuclear axis, and 
by symmetry J^ J= J. In Eq. (8), cross terms 
such as J have been neglected. The reason for doing 
so is that these terms are smaller than the diagonal 
terms such as L. The exchange term, J, consists of a 
large number of integrals but, in general, the . vaiue.of 
J is roughly proportional to the overlap integral23b 
which by symmetry is zero for the cross terms. 

It is clear from Eq. (8) that a knowledge of any two 
of the states enables one to solve for J and f,,,,, and 
from these the energies of the other two states can be 
calculated. This has been done for N2 with excellent 
results.' 
• It is worth mentioning that a more rigorous scheme 
would include terms like J2,, in Eq. (8). We have not 
.done so since there are not at present sufficient data to 
evaluate the additiOnal terms which would arise. The 
inclusion of these additional terms should serve to make 

• the agreemeht with experiment even better. The re-
suits obtained with . the present scheme justify this 
approach—at least until more experimental data 
become available. 
• The simple MO description of these four states of 
N2 is giveTn in Table IX, together with the VB energy 

• expressions. The MO's, o',, ir,, ir,, ir, irf, and cru,t 
are also shown as approximated by a linear combina-
tion of atomic orbitals (LCAO), and it is evident from 
symmetry that ir, and ir form two degenerate sets. 
The relation between the MO and VB descriptions is 
clear fro.m Table IX: a pair of electrons in a bonding 

• MQ leads to a contribution of +J according to the VB 
perfect pairing approximation, whereas the combina-
tion of one electron in a bonding MO plus another 
electron of. the same spin in the corresponding anti-
bonding MO leads to a contribution of - J. This latter 
point has been previously pointed out in some detail 
by Linnett,° who showed that the simple MO wave 
function for two such electrons, which in Slater deter-

• minants is

lru+a irg+àI,	 (9) 

is entirely equivalent in the LCAO approximation, 

I These MO's are also often denoted as 	 ,-2/',, 
and g*2p, respectiYely.

except for a normalization factor, to a VB wave func-
tion in terms of AO's, which is 

I 2p,,,a	 2p,,,a I.	 (10) 

These simple relations serve as a guide for the more 
complicated case of 02. From the MO description of the 
various molecular states which arise from the interac-
tion of ground state atoms, one should be able to write. 
down the YB expressions for the , interaction energies. 
Since the simple VB description yields results which are 
in general superior to the simple MO results at large 
internuclear separations, such a procedure should yield 
valuable results, as it does for N2. 

The foregoing procedure cannot be applied to 02 
without modification and extension. To illustrate why 
this is so, we consider the six lowest states of 02, whose 
simple MO description is given in Table X. In this 
simple description there are a number of differçnt elec-
tron distributions for the '+, and 34+ 
states which are degenerate with the ones given in the 
table. The MO wave functions for these states there-
fore have to be represented by linear combinations of 
the wave functions associated with the different elec-
tron distributions. Allowance for the use of linear 
combinations will lead to splitting, causing, for ' ex-
ample, the state to have a different energy than 
eithei the 'i or the r state: This splitting might be 
looked on as a second-order effect, and it is not included 
in the present approximation. 'Such splitting . may .be 
fairly large, but we expect that its effects 'would not be 
greater in any case than the energy difference between 
the ^r and states. Neglecting this effect, then, we 
see from Table X that there are three electron configura-
tions which did not occur in N2. These configurations 
are

7r	 . '1	 1J	 t'+
(11) 

1r	 11	 1.I	 '1'


(A) (B) (C) 

The method of treating these electrons from• a \TB 

viewpoint is suggested by the work of Linnett. 6 Con-
sider the arrangement (A .). As mentioned previously, 
Linnett has shown that two electrons with a spin, of 
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is entirely equivalent, except for a normalizing factor, 
to the simple VB bond wave function 

2p,a	 2p,,j	 2,,,a	 2p5jfl .	 ( 13) 

According to (13), we can think of the two electrons of 
a spin on the different atoms contributing an energy of 

f,,1,, and similarly for the electrons of I spin, for a 
total ontribution of —2J115 . 'Alternatively, (13) can be 
interpreted as two electrons on each atom. having their 
spins internally paired, and hence randomly oriented 
(nonpaired) with respect to the spins of the two 
electrons on-the other atom. Accorcling.to  Eq. (7), this 
interpretation leads to an energy contribution of 
4(— J,,,,) - 2J,,,,, as.before. 

Finally,.thè arrangement:(C) can also be treated by 
the Linnett procedure,. and is obvioisly equivalent to 
one electron with, a spin in each AO plus one electron 
with spin n the antihondisig ir5 MO. The two electrons 
in the AO's contribute.—.[,,,, to the energy, but the 
third electron. in:: the antibonding MO ,contributes 
— If,,,,. This has to be soif the configuration. 

.ir5±	 I 
-	 - 

lru± I 
to give a. net contribution of - f,,,, as dictated by the 

perfect pairing relation. The one electron in the 1r 
MO has been assumed to contribute +J,,,,, so that the 
electron in the 7r5 MO must contribute to — If,,,, to 
make the sum be - f,,,,. Thus the total contribution 
from configuration (C) iS --If,,,,. This can -also be seen 
in an even simpler -way. Configuration (C) is equiva-
lent to (B) with ojie electron removed from a bonding 
MO and hence the energy of (C) is —2J,,,,— (+f,,,,) 
- -If,,,,. 
- With these rules, then, we can immediately write 
down the energy expressions for the six lowest states of 
02. These are given in Table X, where we have again 
set J,,,,= f,5. To the approximation of neglecting 
splitting, it is seen that the six states break up into two 
sets of three states each. This is in approximate agree-
ment with experiment, as can be seen in Fig. 2. 
- The foregoing discussion -suggests -that the whole 

method can- be formally treated completely on the 
basis of single electrons, and all reference to electron 
pairs eliminated. If we assign a contribution to the 
interaction energy of + f for a single electron in a 
bonding MO, and — If for a single electron in an 
antibonding - MO, the correct VB energy expression 
can be obtained simply by adding up the contribu-
tions of all. the electrons. It seems somewhat para-
doxical that an energy expression for electron pairing 
can be written down in terms of single electron energies, 
but reference to the-preceding-discussion and. to Tables 
IX and X shows the validity of the procedure. This 
result greatly simplifies the problem of writing down 
energy expressions for large numbers of complicated

which one is in a bonding 3r MO and the other is in an 
n:ntibonding	 MO, can be considered equivalent 

- to one electron with a spin in each separate AO. If a 
third electron with spin is now added to the bonding 
yr,, MO. Linnett has shown that the situation can still 
be described as the two electrons with a spin occupying 
AO's and the one electron with fi spin occupying the 
jr,, MO. According tol E. (7) the pair of electrons in 
the AO's contribute an amounf - .1,,,,. to the interac-

• tion energy. The electron in the bonding 7r MO forms a 
one-electron bond, and the strength of such a bond is 
usually about one-half the strength of. the correspond-

• ing two-electron bond. 23 Thus the total contribution to 
the interaction energy from the "three-electron bonfl" 
of configuration (A) is about --f,,,,4 The "thre-
electron bond" energy has been discussed in th earlier 
paper2 on NO; where it was shown that the results 
obtained on this basis are quite reasOnable, and con-
sistent with the meager spectroscopic data and with 
the large difference in dissociation energy between- NO 

-- and NO. 
Consider now the arrangemel:lt (B). Itis easy to 

- _	 showby, _th rules of determinants that, within -the 
LCAO approximation, the simple M0ftiaiñ 

.lru+a	 +3	 * +a	 7r0+f3	 - .( 12) 

Since the arguments used to obtain this value are at best 
. heuristic, the referees have suggested that a more detailed com-
ment should be made. Consider the wave function cia ba 
(a+b)fi • . ma n I, where the functions a, b, c, etc., are assumed 
normalized On the respective atoms. This wave function corre-

• sponds to the "three-electron bond" involving the. AO's a and b, 
• which are associated with the like atoms A and. B. The terms in 
the interaction energy arising from this three-electron bond are 

-	 - Vi—(abab),,+(ab),*, 

where we have as usua?neglected the multiple exchange and 
coulomb integrals, and where-

- .	 (ab ab) H =J Caiasb,c4 . . )H(bja,a,c 4 . . . )dr, 

(ab) H	 (aiaib,c4 . . )H(aib,bac4 . . . )dr. 

We now want to- relate this result to the energies of the one-
electron bond and of the repulsive two-electron bond with parallel 
spins. The wave, function for the repulsive .two-electron bond be-
tween a and b is cia ba	 I, and leads to a contribution to the 
interaction energy of	 . 

V2 -- (ab ab)H, 

which we have set equal to —J,,5 . Similarly, the wave functiosi 
for the one-electron bond between a and b is I (a+b)a • . nf3 I, 
and leads to a contribution to the interaction energy of 

-	 . .	 .	 Vi(ab)y, 

which we have assumed to have half the strength of a normal 
attractive two-electron bond, or - -If55 . The interaction energy for 
the three-electron bond is therefore 

V, V2+-V1 —f51,. 

Thus, the value we have used in this paper is, consistent with our 
- - assOmption regarding the strength of-the one-electron bond. In a 

-	 similar manner it can be shown that the configuration (C) of 
(11) leads to an interaction energy of —J,,,,. 	 -
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TAnLE XI. Electronic configurations and energy expressions for the upper states of 02. 

State	 Electronic configuration (MO)	 Energy (VB)	 Energy in terms of	 and 

3fl .2 (	 +)2(,,. j22.+ (a)o,.(a)
.}	

- 1(J	 J 2) 2 1 I1 g2(,,+)227+(a)U,t(fl) 

5LTQ 2(,+)2,._(a),.+(a)s.(a)o.,,(a) 1 
Il (a)w	 (a)irr(a) u,(fl) - (J+3J)

3 
- V(' 8) + V() 

hLT. 2(+)2.(a)ii.+ (fl)ir	 (a)ou'(l) .1 

- o0(a) (	 )2(_)2,rg+ (a)2r0(a)o,(a)
}	 - (Jr+Jvy) 

u(a) (u+)2(u_)2+(a)7r()u(a) 

1Q —2(J—J22) _2V(l) 

5 LX 9 o,(a) (+)2.(a)	 rr(a)o,,(a)
}	

- (J,.+3J,) by + o(a) (.,,. + ) 2 ,. _(a),rt+(a) (.j2o,(a) 

oir	 (a) ir,	 (a)r	 (a) ir1,(a)u,2 2 (J+ J22 ) —4V () +2 V (')

&jj	 crc, (a) (r,,) 27r,r (a) + (a)10(a)a,,2	 - (5J,+3Jvu)	 — V (') +2 V (3A,) 
q 

molecular electronic states, and we believe it combines 
the best features of both the MO and yB theories in 
their simplest forms. 

The simple MO description of the other twelve 
states of 02 is given in Table XI, together with the 
energy expressions obtained by the above scheme. As 
in Tâble-X, we have given only one configuration for 
each state, although several configurations are.possible 
for many of the states. As mentioned previously, this 
will lead to splitting so that the states shown as de-
generate in Table XI will actually be split, although 
we do not believe: such splitting should be greater than 
that observed for. the three lowest states of 02. 

It is now possible to write expressions for the energies 
of all the states in Table XI in terms of the energies of 
any two other states. We choose the and states 
since these are the intermediate ones in the two groups 
of known states. Theresulting expressions are given in 
the final column of Table XI. The energies of these 
different states in the range from 1.8 to 2.5 A can be 
represented as follovs : 

3fl 'H,:V(r) =339 e 3570' ev,	 . (.15) U, 

511 iJ 'He: V(r) = 717 e 356 ev,	 (16) 
0	 SI 

•	 g:V(r)_2l14e'ev,	 (17) 

	

' 5+:V(r)1358e 3570'eV,	 (18) 

	

611 V(r) =2455 e_sfi7r ev,	 (19) U. 

	

- 3 +. l7 (r) 1057 e 35 ev,	 (20) U,	 U• 
-, 5	 5 + . V(r)1433e 3665'ev.	 (21) 

0,	 0 

These curves are shown in Fig. 2 as dashed lines. They 
can, of course, be extrapolated to larger distances than 
Z5 A, but at the expense of increased uncertainty in 
their values. 

The only experimental information on any of these 
curves comes from an analysis of predissociation effects 
in the B curve. Wilkinson and Mullikcn5 find that 
there is certainly predissociation at the v'= 12 level of

the B curve, and it is probable that predissociation 
takes place in the whole range from v'=4 to v'= 12. 
According to the correlation rules and the selection 
rules for prcdissociation, 25 only the 3ll state can pre-
dissociate the B state strongly. Wilkinson and 
Mulliken suggest that the 3fl, curve predissociates the 
B ,r curve by crossingit to the left of the minimum 
at v'= 12. They further suggest that the 	 curve comes 
close to theB curve most of the way up the lef t-
hand side of the curve, and that this ..ould explain the 
probable prcdissociation in all levels from v'=4 to 
v'= 12. Our calculated curve for the 3fl, state rises a 
little too rapidly to pass. entirely on the left-hand side 
of the B	 curve from the minimum to v'= 12.

Extrapolation of our curve inward-indicates that it 
cuts the B	 not only at about v'= 12, but also right

at the minimuiri. Wilkinson and Mulliken rule out the 
possibility of a double crossing of the B	 curve by 
the curve, once at the minimum and once at 
v' 12, because of the absence of any observed pre-
dissociation effects at the v'=O and v'= 1 levels; It is 
therefore probable that our 	 curve is slightly too

high around the region of the minimum of the B 
curve, but this is easily explained by the approximations 
we have made. Allowance for the effect of splitting 
would lower our 311k curve, and inclusion of. the cou-

Reference 3, Chal). VII, Sec. 2. 
§ No!e added in proof—After this article had been submitted 

for publication, Dr. Wilkinson called our attentionto Dr. P. 1K. 
Carroll's work on predissociation in the Schuniann-Runge bands 
[Astrophys.J. 129, 794 (1959)]. Carroll reports a predissociation 
at v'=4 which apparently is stronger than the prcdissociation at 

= 12. He suggests that this may he caused by the 3fl curve 
crossing on the right-hand side of the curve at v'=4. If this 
is so, then it is difficult to explain the other prcdissociaiions 
ranging from m" =4 up to v' = 12, especially the fact that the prob-
ability for prcdissociation appears to have two maxima, one at 
v' =4 and another at v' = 11 with a minimum at v' =9. Carroll. 
has also found abnormally wide widths for the rotational lines in 
the 2-0 and 1-0 bands ol the Schuniann-Runge bands. He feels 
that this is due to a blending of line structure components. Our 
explanation would he tbat the 11 curve crosses at the bottom of 
tile	 curve, as is suggested by our calculations, and then rises

along the left-hand branch as Wilkinson and Mulliken suggest. 



INTERACTIONS BETWEEN OXYGEN ATOMS
	

523 

lombic and overlap integrals dropped from Eq. (7) 
would cause it to rise fairly sharply at small inter-
nuclear separations. If we USC the crossing point at 
v'=12 ( 17= 1.80! cv, r= 1.342 A) together with our 
values for the RH,, curve a.t large distances, the equa-
tion 

V(r) = 7.61 exp(—O8224 r2) cv,	 Fm. 3. Average Ve 
02-02 interaction as 

1.34 A<r<2.5 A (22) obtained by diulerent 
methods. 

gives an excellent fit. Equation (22) is not entirely 
correct, however, since it still crosses the B ,r curve 
at the minimum, and it is entirely probable that it 
should pass beneath the minimum. Further evidence 
for this is the apparent observation by Wilkinson and 

lI:1_ ,._._,,-. 1.,	 ...-..-1.-..-	 -1..-. C.-.l....-.......

\ /Eq.(26) 

Eq.(26) plus dispersion 

vibrational 
\ \laxation 

1VIUIIIKe1I UI	 ii	 WI.1IJS. UULILIIIIIUIII	 UIIUCI	 LUC	 ..nlIuI,Jd,111I-

Runge bands which may be attributable to the transi- R (A) 
tion ll,1+—;. - 

Wilkinson and Mulliken also rule out the crossing of- Similar procedures worked well for the N2—N2 and 
the B	 r curve by the HU curve at about v'3 on the N2-02 interactions. 1 ' 2 Consider the interaction of an 
right-hand side of the minimum, a suggestion made by oxygen atom, O(2p) (2p5) 2 (2p) , with another oxygen 
Flory26 'to explain certain photochemical effects. They atom, O(2p)(2p5) (2p) 2, each of which is bound to	 - 
suggest that the photochemical results can be cx- - another oxygen to form two oxygen - molecules. The 
plained by a"fbiThd"	 disiãiôff h'ëhrii' iitractin ofth'ese tw'o -configurations will-lead--to-the----

- by any of the 5E,r, 'H,,, or all,, curves. Our result mdi- lowest energy. The electron spins on these two atoms 
cate that, the	 ,i- curve crosses the 	 curve right are	 uncorrelated	 (nonpaired),	 and	 by	 the	 perfect 
at v'=3. -	 -- pairing relation the net interaction energy between 	 - 

Our results, therefore, are at least not inconsistent the two atoms is 
with the meager experimental information that is

V(O . . .0) = __ (2 J) - (2 J22) = - J— 2 J,,, available on the repulsive states which dissociate to -	 -	 - 
- ground state atoms. It can further be shown that they -	 ,	 (23) 

are consistent with	 the previously calculated 2 NO or from Table X, 
energies, on the assumption that the exchange integrals 
J are about the same for NO and 02. Since the energy --	 V(0....) =	 [7v(')sv(,,)],'	 (24) 

for the 2ll ground state of NO is V( 211, NO) = J+J55 , which can be represented by the expression 
and that -for the	 state of 02 i	 V( 3&, 02) = J-
3J55,we-can calculate J 2, and J	 as a function of dis- V(O ... 0) '812 e_asssr ev,	 1.8 A<r<2.5 A.	 - (25) 

tance frdm the kncrwn energies and use the values to The 02O2 interactions are obtained by adding up 
calculate the energy of the '&,, state of 02. The energies all the four pertinent 0 . . 0 interactions, each of which 

. of the	 and	 ,, sttes in turn determine the eiergies is given by Eq. (25) with the value of r appropriate for 
of all the other 02 states, as has been shown in Table

-
the	 atom-atom	 distance.	 The	 dependence	 of	 the 

XI. The '	 energies calculated in this way agree 
- with the values of Table VIII quite well. The deviation

O.—O, interaction on orientation is thus given im-

is 0.010 ev at r= 1.8 A, rises to 0.041 cv at r= 2.1 A, plicitly by the dependence of the atom-atom distances 

and falls to 0.018 cv at r=2.6 A. These deviations on the molecular orientations. 
In many cases it is useful to have the total 02—Os 

propagate directly to the other 02 states as shown by interaction energy averaged over all orientations. The 
the last 'column of Table XI. The agreement is cer-
tainly within the uncertainty, caused by our neglecf of 
splitting.

The Feferee has pointed out that the interaction energy calcu-
- lated -ill	 way does not take into account the fact that the

02-02 INTERACTIONS 

'The modified perfect pairing scheme describes inter-
actions between molecules as just the sums of the 
interactions between the constituent atoms, so that we 
can calculate approximately the long-tange 02-02 
interaction from t;he results of the preceding sections. 

isp J . Flory, J. Chcm. Phys. 4,23 (1936).

values ot J ailU i,,1 depend on tile relative orientation oi the 
two 0, molecules, as well as tile fact that at certain orientations 
tile cross terms such as Jr,, become large. Consideration of cx 
tremes of orientations shows that these effects introduce a max-
imum variation with orientation of about 40% into Eqs. (23)-
(25). Neglect of this variation is thus consistent with the other 
approximations involved,- such as neglect of multiple exchange 
integrals [13. A. Masm and j. 0. Hirschfclder, J . Chem. Phys. 
26, 756 (1957)], inasmuch as the i's are really treated as dis-
posable parameters to be determined from experiment. Further-
more, tile final averaging over all molecular orientations to obtain 
Eq. (26) also tends to compensate the error. 
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method of averaging has already been given in con-
nection with the N2—N2 interaction,' and leads to the 
result 

(V(R) )=5580 c 3 cv, 1.93 A<r< 2.70 A,	 (26) 

where R is the distance between the' centers of mass of 
the molecules. This result can be compared with 
similar potential .energies obtained from analysis 
of measurements of high-temperature gas viscosity2 
and of vibrational relaxation times. The viscosity 
result has been given as an exp-six potential, and the 
vibrational relaxation result as a Morse potential. The 
comparison is shown in Fig. 3. Since Eq. (26) is the 
result of essentially only a first-order perturbation calcu-
lation, it is of interest to add on the second-order 
perturbation energy, the London dispersion energy, 
which is given approximately as 

(V(dis))= *( 2I/R6) = - (24.0/R6) ev, R in A, 

(27) 

where a is the average polarizability of an 02 molecule 
and I its ionization potential. The sum of Eqs. (26) 

'and (27) is also shown in Fig. 3. The ageement among 
the potentials, calculated in three' cqT1pletely mdc-
pendent ways, is excellent. The fact that the potential 
from vibrational relaxation measurements seems high 
is to be , expected from the approximations made in the' 
theory of vibrational relaxation. This theory is in effect 
a one-dimensional treatment involving the end-to-end 
molecular conflguration. 7 Since this configuration leads 
tothe largest interaction energy of any configuration, 
the difference shown in Fig. 3 is not unexpected. 

SUMMARY

states of 02. The long-range "tails" of the ', 
and curves were fitted with Hulhurt-Hirsch-

felder functions, whereas the '^— curve was best fitted 
with a Morse function. The constants for these em-
pirical functions are given in Table VIII. The A 
curve was found to be best fitted at large r by Eq. (6), 
and the X 32 r curve at large r was represented by 
Eq. (5). Relations among the eighteen states of 02 
dissociating to ground state atoms have been obtained 
by a modified perfect pairing approximation. This is 
based on a description of electronic configurations in 
terms of a combination of A0's and MO's which leads 
to simple rules for writing down a VB energy expres-
sion; given a simple MO description of an electronic 
state. These relations yield results for the repulsive 
states of 02 which have been represented by Eqs. (15) 
through '(21). The repulsive states have been checked 
against predissociation effects observed in the 'B %r 
state, and are in agreement with the observations. The 
curve for the B 2,r . state, the upper state of the 
Schumann-Runge bands, has been calculated by the 
RKR method with the results shown in Table VII. A 
partial check has also been made by calculating the 02 
curves in terms of 'the known curves for the X 2fl 
state of NO and the state of 02, with satisfactory 
agreement. 

An 02-02 potential has been generated from the 
0-0 potentials in a manner similar to that used for 
the N2—N2 and N2-02 potentials obtained pre-
vious!y. 12 The results are consistent with other po-
tentials obtained from different experimental sources. 

It is difficult to assess the absolute accuracy of all the 
results obtained. 'However, they are all internally 
consistent and in agreement, with the limited available 
experimental data. 

Potential energy curves for the ' interactions between 
two ground state' 0 atoins have been calculated from 
spectroscopic data and from approximate quantum-
mechanical relations. The results obtained from 
spectroscopic data (RKR method) are given in 
Tables 1–VI for the X 3^r, '&,, +,	 A	 and 

27 (a) E. Bauer, J. Chem. Phys. 23, 1087 (1955); (b) 'M. 
Salkoff and E. Bauer, ibid. 29,26 (1958).
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