Design and Development Comparison of Rapid Cycle Amine 1.0, 2.0, and 3.0

Cinda Chullen1 and Colin Campbell2

\textit{NASA Johnson Space Center, Houston, Texas, 77058}

William Papale3 Sean Murray4 and Robert Wichowski5

UTC Aerospace Systems, Windsor Locks, Connecticut, 06096

\textit{and}

Bruce Conger6 and Summer McMillin7

\textit{Jacobs, Houston, Texas, 77058}

The development of the Rapid Cycle Amine (RCA) swing-bed technology for carbon dioxide (CO\textsubscript{2}) removal has been in progress since favorable results were published in 1996. Shortly thereafter, a prototype was designed, developed, and tested successfully and delivered to Johnson Space Center in 1999. An improved prototype was delivered to NASA in 2006 and was notated as RCA 1.0 and sized for the extravehicular activity (EVA). The new RCA swing-bed technology is a regenerative system which employs two alternating solid-amine sorbent beds to remove CO\textsubscript{2} and water. The two-bed design employs a chemisorption process whereby the beds alternate between adsorption and desorption. This process provides for an efficient operation of the RCA so that while one bed is in adsorb (uptake) mode, the other is in the desorb (regeneration) mode. The RCA has now progressed through several iterations of technology readiness levels. Test articles have now been designed, developed, and tested for the advanced space suit portable life support system (PLSS) including RCA 1.0, RCA 2.0, and RCA 3.0. The RCA 3.0 was the most recent RCA fabrication and was delivered to NASA-JSC in June 2015. The RCA 1.0 test article was designed with a pneumatically actuated linear motion spool valve. The RCA 2.0 and 3.0 test articles were designed with a valve assembly which allows for switching between uptake and regeneration modes while minimizing gas volume losses to the vacuum source. RCA 2.0 and 3.0 also include an embedded controller design to control RCA operation and provide the capability of interfacing with various sensors and other ventilation loop components. The RCA technology is low power, small, and has fulfilled all test requirements levied upon the technology during development testing thus far. This paper will provide an overview of the design and development of RCA 1.0, 2.0 and 3.0 including detail differences between the design specifications of each.

1 Project Engineer, Space Suit and Crew Survival Systems Branch, Crew and Thermal Systems Division, 2101 NASA Parkway/EC5.
2 Portable Life Support System Team Lead, Space Suit and Crew Survival Systems Branch, Crew and Thermal Systems Division, 2101 NASA Parkway/EC5.
3 Staff Engineer, Research and Development, Space & Sea Systems, 1 Hamilton Rd./M/S 1A-2-W66.
4 Principal Engineer, Electrical Design, Space & Sea Systems, 1 Hamilton Rd./S 1A-2-W66.
5 Staff Engineer, Electrical Design, Space & Sea Systems, 1 Hamilton Rd./S 1A-2-W66.
6 Engineering Analysis Lead, Thermal and Environmental Analysis, 2224 Bay Area Blvd./JE-5EA.
7 Project Engineer, Hardware Systems Project Engineering, 2224 Bay Area Blvd./JE6WC.