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 GENERATION OF SIMULATED TRACKING DATA FOR LADEE 
OPERATIONAL READINESS TESTING 

James Woodburn*, Lisa Policastri† and Brandon Owens‡ 

Operational Readiness Tests were an important part of the pre-launch prepara-

tion for the LADEE mission. The generation of simulated tracking data to stress 

the Flight Dynamics System and the Flight Dynamics Team was important for 

satisfying the testing goal of demonstrating that the software and the team were 

ready to fly the operational mission. The simulated tracking was generated in a 

manner to incorporate the effects of errors in the baseline dynamical model, er-

rors in maneuver execution and phenomenology associated with various track-

ing system based components. The ability of the mission team to overcome 

these challenges in a realistic flight dynamics scenario indicated that the team 

and flight dynamics system were ready to fly the LADEE mission. 

INTRODUCTION 

The Lunar Atmosphere and Dust Environment (LADEE) mission1,2,3 was a lunar science and 

technology demonstration mission that launched in September of 2013 and operated for approxi-

mately 7 months. Operational Readiness Tests (ORTs) were an important part of the pre-launch 

preparation for the LADEE mission4,5. The goal of the ORTs was to demonstrate that the Mission 

Operations System--including the operations team--was prepared to conduct the planned mission. 

These tests were designed to support an evaluation of the level of preparedness of the operations 

system and team under normal and stressing conditions through the introduction of anomalies 

into a simulation of the nominal mission plan. Results of the ORTs were scrutinized at the Opera-

tions Readiness Review and passage of the ORTs was a requirement for the verification of launch 

readiness.  

During operations on a live mission, the true trajectory of the spacecraft is never known. Yet 

trajectory information is required to schedule science observations, ground contacts, etc. In order 

to provide an estimate of the trajectory for such purposes, an orbit determination process is per-

formed using observations of the spacecraft to yield an updated estimate of where the spacecraft 

was during the times when measurements were taken and provide predictions of the spacecraft 

position at future times. This relationship between the unknown truth and a determined estimate 

was emulated during the LADEE ORTs in order to ensure that LADEE’s orbit determination pro-

cess6 could handle the types of errors and uncertainty that were expected during the mission and 

create suitable products for other processes, such as the maneuver planning process7. Simulated 
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tracking data was constructed based on a series of simulated trajectory segments that were deviat-

ed from the nominal mission trajectory through injection, maneuver, and dynamical model errors. 

The truth trajectory was not known to the Flight Dynamics Team during the test period. The 

Flight Dynamics Team used the simulated measurements to generate estimates of LADEE’s tra-

jectory. The desired dual realizations of the spacecraft trajectory were therefore available for use 

during the ORTs: the simulated truth trajectory which was used in the generation of all simulated 

sensor outputs and the trajectory estimate produced by the Flight Dynamics Team which was 

used for mission planning purposes. The flow of information through the various teams and func-

tions involved in the LADEE ORTs and mission operations is depicted in Figure 1.  

 

Figure 1. Representative ORT data flow diagram. 

The LADEE mission trajectory8 can be viewed as a concatenated set of trajectory segments 

beginning with the near Earth initial acquisition period, transitioning to the lunar transfer phase 

through cis-lunar space, entering a commissioning orbit at the Moon via a Lunar Orbit Insertion 

(LOI) maneuver, and finally descending into the lunar science orbit. LADEE was to be the first 

mission to launch on the all-solids five stage Minotaur V. To accommodate the launch disper-

sions, a phasing loop strategy, as shown in Figure 2, was chosen where two to three apogee-

raising maneuvers were planned in order for LADEE to arrive at the Moon on the same day, re-

gardless of the launch achieved. The progression of the trajectory from capture into lunar orbit to 

the final science orbit also followed a series of maneuvers that gradually decreased the altitude 

above the lunar surface as depicted in Figure 3. The red segments of the trajectory in Figure 3 

denote where the Moon blocks view of LADEE from any DSN station and the purple cone de-

picts the viewing geometry from the Earth for the LOI maneuver. Table 1 provides a subset of the 

overall maneuver plan for the LADEE mission. It is noteworthy that the maneuver plan contained 

a number of maneuvers which nominally had either zero or a very small effect on the LADEE 

trajectory. Such maneuvers are put in place to correct for unexpected deviations, such as those 

generated by the anomalies inserted into the ORTs, that exist between the trajectory estimate and 
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the planned trajectory. In the case where a nominal or near nominal trajectory has been main-

tained leading up to the planned time for such a maneuver, the operations team often decides to 

waive (not perform) the maneuver.  

 

Figure 2. Phasing Loop Trajectory, Earth-Inertial Frame 

 

Figure 3. Trajectory During Lunar Orbit Insertion Maneuvers, and Orbit Lowering Maneuvers, 

Moon-Inertial Frame 

The ORTs were designed to exercise operational personnel, software, and procedures across 

selected portions of the complete mission timeline. The original ORT campaign design contained 

five test periods which were later reduced to four test periods due to scheduling constraints. Each 

ORT test period focused on evaluating the system and team performance across a significant 

event in the LADEE mission timeline. In this paper, we describe the design of the trajectory per-

turbations and tracking data anomalies for the LADEE ORTs. The software used to generate the 

simulated tracking data did not directly support the modification of all settings needed to generate 

the desired anomalies during each ORT data simulation time period in a single run. We outline 

the procedure that was developed for stopping and restarting the simulations in a manner that 

maintained continuity of the spacecraft trajectory and related stochastic model parameters while 
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allowing for the desired modifications to measurement noise and biases to be injected. Finally, we 

discuss the effectiveness of the tests in familiarizing the team with potential anomaly scenarios 

and in identifying improvements to planned operational procedures.  

Table 1. Example of LADEE Maneuver Plan Used for Planning ORTs 

 

ORT DESIGN OVERVIEW 

The ORTs were designed to exercise the Mission Operations System over critical events in the 

mission timeline. While it would have been desirable, in one sense, to use a continuous trajectory 

covering the entire mission as the basis for all of the ORTs, the use of mostly independent trajec-

tory segments for each of the ORT time periods was less complex and provided more flexibility 

in the design of the tests for individual mission phases. The choice to use a test specific trajectory 

baseline for the ORTs facilitated changing the list of challenges inserted into each ORT period at 

any time up to the start of the ORT without imposing the requirement that data for all ORT peri-

ods be regenerated. It also reduced the burden related to the planning of ground contact periods 

which could be designed based on an a priori set of pre-generated trajectories since orbital pertur-

bations injected into a particular ORT did not accumulate into large enough trajectory differences 

during the ORT time period to invalidate the planned contact periods. Finally, the additional flex-

ibility of this approach allowed the ORTs to be performed in non-chronological order, thus 

providing the opportunity to test key activities (e.g., fault management reconfiguration9 for the 

lunar orbit insertion, science phase activities, etc.) earlier in the ORT campaign and to adapt to 

the overall project schedule as necessary. Error! Reference source not found. presents an over-

view of the four ORT test periods. The times listed in Error! Reference source not found. rep-

resent times in the LADEE mission timeline, not the wall clock times when the tests were per-

formed. The actual order in which the tests were performed is also provided. 
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Table 2. High Level ORT Descriptions. 

ORT Order Start/Stop Trajectory Events Event Perturbation 

1 3 
2013-09-06T21:00 

2013-09-09T00:00 

Launch 

2013-09-07T03:31 

Off-nominal trajectory consistent within 

expected launch dispersion 

2 4 
2013-09-29T15:00 

2013-10-03T00:00 

Perigee Maneuver 3 

2013-10-01T16:30 

Start with degraded orbit. Maneuver exe-

cution ~3% cold with small pointing error. 

3 1 
2013-10-06T03:00 

2013-10-09T00:00 

Lunar Orbit Insertion 1 

2013-10-06T12:00 

Maneuver execution ~7% hot with small 

pointing error 

5 2 
2013-12-23T14:00 

2013-12-28T01:00 

Orbit Maint. Maneuver 6 

2013-10-28T01:00 

Maneuver execution ~2% cold with small 

pointing error 

TRAJECTORY SIMULATION 

Truth trajectories were simulated for each ORT. Each truth trajectory was based on the selec-

tion of a particular trajectory from a set of feasible trajectories provided by the Trajectory Design 

Team. Each feasible trajectory was constructed as an independently targeted trajectory starting 

from an orbit insertion state that was consistent with the expected dispersion about the nominal 

orbit insertion state. In the case of ORT-1, which covered the launch portion of the LADEE mis-

sion timeline, the truth trajectory contained the orbit insertion state and exactly followed the se-

lected feasible trajectory for the duration of the test period. For the remaining ORTs, truth trajec-

tories were generated as variants of the provided feasible trajectories where part of each truth tra-

jectory preceded the test time period. Inside the test period, truth trajectories were allowed to di-

verge from the feasible reference trajectory via the inclusion of errors in the ORT initial state and 

incorporated the effects of perturbations to the dynamical model and maneuvers. The simulated 

truth trajectories were generated using AGI’s Orbit Determination Tool Kit (ODTK)10. In addi-

tion to serving as the basis for the generation of simulated tracking data, these truth trajectories 

are used in the simulation of ancillary ORT products (attitude, s/c events, etc.).  

Initial condition errors 

Initial condition errors represent deviations from the selected feasible trajectory at the begin-

ning of the ORT test period. Initial condition errors were generated by starting the ODTK track-

ing data simulation prior to the beginning of the test period, when possible, and allowing the 

Flight Dynamics Team to process imperfect observations over the time period between the start 

of tracking data generation and the beginning of the ORT test period. The tracking data generated 

prior to the start of the ORT followed the planned station contact schedule so as to provide an 

orbit estimate with accuracy that would be expected during the mission at the start of the ORT 

test period. For ORT-3 and ORT-5, the simulated truth trajectory exactly followed the selected 

feasible trajectory during times prior to the test period. For ORT-2, an unexpected RCS thruster 

firing was included in the pre-test period trajectory simulation for the purpose of degrading the 

orbit determination solution at the start of the test period. ORT-1 was a special case where the 

initial condition errors were incorporated via the selection of a non-nominal, yet feasible trajecto-

ry at initial orbit insertion. 

Dynamical model errors 

The dynamical model required for the LADEE mission consisted primarily of Earth and Moon 

gravity plus solar pressure. Acceleration errors in the baseline dynamical model were injected 

through the addition of an exponentially correlated stochastic sequence to the solar pressure coef-
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ficient. The stochastic accelerations in the solar pressure model were along the sun line with a 

root variance of approximately 13% of the nominal solar pressure acceleration and a half-life of 2 

days. Accelerations due to spacecraft thrusting are considered separately for the purpose of this 

analysis.  

 Maneuver errors 

Nominal acceleration profiles for orbital maneuvers in each ORT test period were provided by 

the Maneuver Planning Team. The maneuver acceleration profiles consisted of a time series of 

accelerations and fuel use due only to the thrust force on the spacecraft. Deterministic errors in 

maneuver magnitude were generated by importing the acceleration profile into EXCELTM and 

scaling the accelerations by a predetermined value. For example, to simulate a maneuver that ex-

ecuted 7% hot, all accelerations were multiplied by a factor of 1.07. Maneuver errors also includ-

ed a small random deviation in the direction of thrust with root variance of a fraction of a degree 

(varied by maneuver). The simulated maneuver errors were unique and independent for each ma-

neuver.  

MEASUREMENT SIMULATION 

Simulated measurements were generated based on a station contact schedule provided by the 

Mission Planning Team. The contact periods were initially determined based on a nominal mis-

sion trajectory provided by the Trajectory Design Team. Outside of the period just after launch, 

the contact periods were mostly unaffected by deviations from the nominal trajectory due to the 

large distance between the spacecraft and the Earth. Measurement types, accuracy and the time 

between observations were set to be as expected during the mission based on the capabilities and 

normal operational procedures of the tracking systems. LADEE tracking was performed by the 

NEN, USN, and DSN tracking systems. Reported observations were constructed as the modeled 

value of the measurements corrupted by white noise and time correlated measurement bias, tran-

sponder delay, and troposphere modeling errors. Observation accuracy (as measured by the white 

noise variance) was determined for each (tracking station – observation type) pairing by pro-

cessing data from prior missions. These pass-specific increases in measurement noise were not 

communicated to the Flight Dynamics Team. 

Measurement white noise 

During nominal tracking passes, observations were corrupted with Gaussian white noise with 

variance that depended upon the tracking station and observation type. In addition, a number of 

anomalous passes were simulated where the tracking data quality was degraded due to an increase 

in the variance of the white noise for specific measurement types.  

Measurement bias errors 

Nominal measurement biases were set to zero but were allowed to vary during the simulation 

according to exponentially correlated stochastic sequences. A separate stochastic sequence was 

used for each (tracking station – observation type) combination where the amplitude and half-life 

of each stochastic sequence was chosen to be consistent with results from prior processing of real 

mission data. During several anomalous passes, step functions were added to selected measure-

ment biases to render the observations useless. 

Measurement reporting 

Measurements were reported on a pass by pass basis with a unique file containing the meas-

urements from each pass. File naming conventions varied between DSN and non-DSN stations. 
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LADEE TRACKING RESOURCES 

 The LADEE mission was tracked by a combination of NEN, USN, and DSN tracking sta-

tions. The set of stations used for the generation of simulated tracking data during the ORTs is 

given in Table 3. The set of stations used for the LADEE ORTs was augmented by the addition of 

the USN/Western Australia station AUWA01 during the actual mission. Not all measurement 

types associated with a station were generated for each tracking pass supported by that station.  

Table 3:  LADEE Tracking Stations Used in ORTs 

Station Obs Types Obs Spacing Sim Accuracy 

DSN 27 
TCP 

Sequential Range 

10 sec 

60 sec 

0.003 cycles 

0.5 m 

DSN 24 
TCP 

Sequential Range 

10 sec 

60 sec 

0.003 cycles 

0.5 m 

DSN 34 
TCP 

Sequential Range 

10 sec 

60 sec 

0.003 cycles 

0.5 m 

DSN 45 
TCP 

Sequential Range 

10 sec 

60 sec 

0.005 cycles 

0.5 m 

DSN 54 
TCP 

Sequential Range 

10 sec 

60 sec 

0.003 cycles 

0.5 m 

DSN 65 
TCP 

Sequential Range 

10 sec 

60 sec 

0.003 cycles 

0.005 m 

USN/HBK 

Azimuth 

Elevation 

Doppler 

5 sec 

5 sec 

5sec 

0.03 deg 

0.02 deg 

75 cm/s 

NEN/AGO 

X 

Y 

Range 

Doppler 

5 sec 

5 sec 

5 sec 

5 sec 

6 arcsec 

6 arcsec 

5 m 

7.5 cm/s 

NEN/WS-1 

Azimuth 

Elevation 

Range 

Doppler 

5 sec 

5 sec 

5 sec 

5 sec 

0.03 deg 

0.02 deg 

0.1 m 

0.15c m/s 

 

USE OF ODTK 

Simulated tracking measurements were generated using ODTK, the same software that was 

used for operational orbit determination during the mission. ODTK provides the capability to 

generate simulated observations based either on the satisfaction of visibility constraints or follow-

ing a predetermined schedule as was required during the ORTs to emulate the quantity of tracking 

data that would be available during the actual mission. There were, however, two requirements 

for the generation of simulated tracking data that ODTK did not support directly: saving tracking 

data from each pass to a different file and generating multiple observables from a single tracking 

station at different rates over a pass. 

We were able to leverage two existing ODTK capabilities to generate the tracking data in the 

desired manner: the option to specify a pre-generated ephemeris as the trajectory reference and 

the ability to pause and restart simulation runs. To achieve all of the data simulation goals, the 

ODTK simulator was run multiple times for each ORT. The first run was used to generate the 
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truth trajectory for the ORT and covered the entire ORT time frame, including the pre-ORT peri-

od during which tracking data was generated to allow for initialization of the orbit estimate, with-

out need for pausing and restarting. The purpose of this run was to generate a spacecraft trajecto-

ry that could be used as the basis for tracking data generation on all subsequent runs. All pertur-

bations to the spacecraft dynamical model and maneuver errors were incorporated into this run 

and the use of the custom tracking schedule was disabled. Tracking data generated during the 

computation of the truth trajectory was discarded as it did not follow the prescribed tracking 

schedule. For the subsequent runs, which were configured to follow the prescribed tracking 

schedule, the spacecraft object in ODTK was reconfigured to follow the truth trajectory generated 

in the first run. This procedure ensured that consistent trajectory information was used for the 

generation of all tracking data. The number of runs required for tracking data generation for each 

ORT depended upon the existence of simultaneous tracking from multiple ground stations and the 

need to generate different observables at unique data rates as described below. Any particular run 

could also be paused and restarted to allow for the injection of tracking data anomalies into the 

simulation. 

The ODTK capabilities to use restart records, pre-generated ephemerides and a customized 

tracking schedule were key in the generation of simulated tracking data. Contact schedules from 

the mission planning team were read by the scripts driving the ODTK simulation runs and used to 

populate the ODTK custom tracking schedule. 

Generation of data at different rates 

DSN tracking data is typically recorded at two data sample rates where sequential ranging is 

reported at a lower sample rate than Total Count Phase (TCP). For the LADEE ORTs, TCP 

measurements were generated every 10 seconds while sequential range measurements were gen-

erated every 60 seconds. ODTK does not currently support the generation of data with observa-

tion rates dependent upon observation type from a single ground station. To work around this lim-

itation, the ODTK tracking data simulator was run twice for each DSN pass: The first run was 

performed at the step size required for the generation of TCP and the second run at the step size 

for sequential ranging. The use of a pre-generated ephemeris for LADEE during the simulation of 

observations during two runs was critical to ensuring that observations generated from independ-

ent simulation runs were consistent. 

Pass specific data files and generation of overlapping tracking data 

Simulated tracking data for each ORT was made available as a set of files where each file con-

tained data from a single pass as collected from a single station. This delivery method was chosen 

to emulate the delivery of real tracking data and to conform to the design of the Ames Flight Dy-

namics System. In the absence of simultaneous tracking from multiple stations, the pass specific 

files were simply generated by pausing the simulation after each tracking pass and renaming the 

output tracking data file before resuming the simulation from a restart record that ensured conti-

nuity of all stochastic parameters in the simulation. When simultaneous tracking was present, the 

simulator was run multiple times in the same manner, once for each ground station, to allow the 

separation of the tracking data into unique files. An exception to this rule was allowed for the 

LADEE ORTs to permit the delivery of DSN sequential ranging in a separate file from the DSN 

TCP measurements to accommodate the use of different data rates. 

Increase in measurement noise 

Each LADEE tracking station was assigned statistical parameters describing the accuracy of 

realized observations based on historical performance. The purely random component of ob-

served measurement errors was characterized as measurement white noise, which is fully de-
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scribed by only a root variance. In the simulation of measurements in ODTK, such noise is not 

represented in the state structure of the simulation; it is merely added on to the modeled meas-

urement based on a random draw. Unexpected increases in the measurement white noise on spe-

cific passes were added during the simulation of tracking data during the ORTs to model situa-

tions where a ground station may not have placed into the correct configuration prior to a pass. 

This was accommodated during the simulation by simply increasing the measurement white noise 

setting while the simulation was paused prior to the affected tracking pass. The prior setting was 

then restored during the pause in the simulation prior to the next pass. 

Step functions in measurement biases and transponder delay 

Another type of anomaly that is sometimes seen in tracking data is a sudden change in meas-

urement bias. This type of anomaly can result from improper ground station configuration, im-

proper spacecraft configuration or hardware modifications at the ground station. In the ODTK 

simulations, measurement biases were represented as the sum of a constant bias and an exponen-

tially correlated, zero mean, stochastic sequence. The random component of the bias was an ele-

ment of the state space. Step changes in the constant component of the bias were inserted during 

pauses in the simulation prior to and after passes where the anomalous behavior was desired for 

purposes of the ORTs. The ODTK simulator provides an interface to the list of the current values 

of the stochastic variables involved in the simulation that allows for their values or the defining 

parameters for the stochastic sequence to be reset during a pause in the simulation. User provided 

changes are then picked up and incorporated into the simulation when the simulation is restarted. 

In this manner, step functions can be added to identified parameters while stochastic sequences 

that have not been altered maintain continuity across the pause and restart of the simulation.  

No a priori transponder delay was provided for use in the generation of the simulated tracking 

data. The transponder delay affects two-way ranging measurements in a manner that makes the 

observed range larger than would be expected based purely on geometry. All ranging data for 

ORT-1 and ORT-2 were generated using a large nearly constant transponder delay. Tracking data 

for the other ORTs was generated with a zero nominal transponder delay. All ORTs modeled the 

transponder delay as the sum of a constant and an exponentially correlated, zero mean, stochastic 

sequence, similar to how measurement biases were handled. ORT-5 included a step function in 

the transponder bias which was generated following the same process as the step functions in 

measurement biases. 

Troposphere mis-modeling 

Errors in the effects of troposphere were introduced in several tracking passes during ORT-5. 

Unlike measurement biases, troposphere uncertainty was not accounted for in state space. Instead, 

an effective offset in the local atmospheric conditions was used to alter the computed tropospher-

ic refraction. These offsets were introduced prior to the simulation of data across the affected dur-

ing a pause in the simulation and were removed during the pause in the simulation prior to the 

next track. 

SPECIFIC DESCRIPTIONS OF ORTS 

Each ORT covered a significant event in the LADEE mission timeline. The ORTs were num-

bered—and are listed below—in chronological order with respect to the mission timeline. How-

ever, as noted above, the ORTs were not executed in chronological order. Anomalies related to 

the trajectory and tracking data were incorporated into each ORT to challenge and provide prac-

tice for the Flight Dynamics Team and to test the robustness of the Ames Flight Dynamics Sys-

tem.  
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ORT-1 and ORT-2 were subject to the additional constraint that they use the same reference 

trajectory so that ORT-1 tracking data could be used in ORT-2. Trajectory selection was im-

portant since the focal point of ORT-2 was the PM-3 maneuver. In the absence of a large enough 

deviation from the nominal trajectory, the PM-3 maneuver could be waived (as it was during the 

actual execution of the mission) which would circumvent the purpose of ORT-2. For this reason, 

the highest C3 energy trajectory from a set of trajectories provided by the Trajectory Design 

Team was selected.  

 

ORT-1: Launch, Activation, and Checkout 

The ORT-1 test time period covered launch and early operations. The maximum C3 energy 

trajectory selected for ORT-1 was used as provided, no additional perturbations were modeled, to 

ensure continuity of the trajectory at the start of ORT-2. A description of the tracking data 

anomalies for ORT-1 is provided in Table 4. Trajectory generation and orbit determination for 

ORT-1 was performed using the Earth as the primary central body. 

Table 4. Tracking data anomalies for ORT-1. 

Station Start/Stop Description 

All N/A 

N/A 

The nominal transponder delay on the spacecraft was set to 1873 ns 

and allowed to slowly vary in a small range about the nominal value 

using a short term delay root variance of 5 ns and correlation half-life 

of 20 days. 

HBK 2013-09-07T03:56:16 

2013-09-07T18:11:37 

Azimuth and Elevation angles are degraded: Short term bias root vari-

ance raised from 1 to 2 deg, correlation half-life reduced from 2 to ½ 

days, measurement white noise root variance increased by 0.05 deg. 

DSS34 2013-09-07T04:30:00 

2013-09-07T09:23:31 

Sequential ranging degraded: Measurement white noise root variance 

increased from 0.5 to 30 meters. 

DSS27 2013-09-07T18:13:17 

2013-09-08T00:45:00 

Sequential ranging degraded: Constant range bias increased by 1.8 

Km.  

DSS34 2013-09-08T00:35:00 

2013-09-08T10:10:00 

Total Count Phase (Doppler) degraded: Measurement white noise 

increased from 0.003 to 0.30 cycles. 

 

ORT-2: Phasing Loop Maneuver 

The ORT-2 test time period covered the third perigee maneuver, PM-3, during the phasing 

loop period of the mission. The baseline trajectory for ORT-2 was selected as the highest C3 en-

ergy trajectory maintaining continuity with ORT-1. Integration of the ORT-2 truth trajectory in 

ODTK began 5 hours prior to the start of the test period. The trajectory was allowed to deviate at 

integration start point from the selected baseline trajectory due to differences in solar pressure 

modeling, the inclusion of an unexpected Reaction Control System (RCS) thruster firing—partly 

inspired by a mass ejection anomaly on a prior mission11—and off-nominal performance of the 

PM-3 burn. Details of the acceleration anomalies included in the ORT-2 truth trajectory are de-

scribed in further detail in Tables 5 and 6. Trajectory generation and orbit determination for ORT-

2 was performed using the Earth as the primary central body. 
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Table 5. Trajectory anomalies for ORT-2. 

Source Start/Stop Description 

RCS 2013-09-29T10:13:11 

2013-09-29T10:13:13 

Errant Reaction Control System (RCS) thruster firing: 2 second pulse 

of a 22N thruster canted 45 degrees off the Z axis of the spacecraft. 

Prior to ORT test period. 

Cp N/A 

N/A 

Solar pressure variation: The solar pressure coefficient was allowed to 

vary during the simulation based on the generation of a random sto-

chastic sequence. The nominal one sigma value for the time depend-

ent variation was set to 13% of the nominal value and the time corre-

lation half-life was 2 days. 

PM-3 2013-10-01T20:54:19 

2013-10-01T20:54:51 

PM-3 Perturbation: The nominal PM-3 burn as provided by the trajec-

tory team was biased to be 3.1415% cold with a small random com-

ponent of magnitude (1 sigma = 0.5%) and a small random directional 

error (1 sigma = 0.5 degrees). 

 

Table 6. Errant RCS Thruster Firing (ICRF Coordinates). 

Epoch 29-Sep-2013 10:13:11 

Delta Vx -0.0767348 m/s 

Delta Vy -0.0622362 m/s 

Delta Vz -0.0650268 m/s 

 

The tracking data anomalies added for ORT-2 are listed in Table 7. This ORT was executed 

last and provided the opportunity to leverage the experience gained by the Flight Dynamics Team 

during the earlier exercises to overcome a more dense set of challenges. Some of the anomalies 

included for this ORT such as large jumps in measurement biases were meant to render tracking 

data from a particular pass useless. 

ORT-3: Lunar Orbit Acquisition 

The ORT-3 test time period covered the first of two Lunar Orbit Insertion (LOI) maneuvers, 

LOI-1. The baseline trajectory for ORT-3 was selected as the nominal launch trajectory in order 

to allow for the use of the nominal station contact schedule and nominal LOI-1 plan. The LOI-1 

uplink time is located prior to the start of the ORT-3 test period. Integration of the ORT-3 truth 

trajectory in ODTK began 5 days prior to the start of the test period as LADEE was approaching 

the Moon. The ORT-3 truth trajectory was allowed to deviate at this point from the selected base-

line trajectory due to differences in solar pressure modeling and off-nominal performance of the 

LOI-1 burn. Details of the acceleration anomalies included in the ORT-3 truth trajectory are de-

scribed in further detail in Table 8. Tracking data anomalies for ORT-3 are shown in Table 9. 

Trajectory generation and orbit determination for ORT-3 was performed using the Moon as the 

primary central body. 
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Table 7. Tracking data anomalies for ORT-2 

Station Start/Stop Description 

All N/A 

N/A 

The nominal transponder delay on the spacecraft was set to 1873 ns 

and allowed to slowly vary in a small range about the nominal value 

using a short term delay root variance of 5 ns and correlation half-life 

of 20 days. 

WS-1 2013-09-15T11:54:31 

2013-09-15T16:34:06 

Ranging degraded: Constant range bias increased from 0.0 to 34.567 

Km. 

DSS 27 2013-09-16T17:24:51 

2013-09-17T01:14:58 

Total Count Phase (Doppler) degraded: Measurement white noise root 

variance increased from 0.003 to 0.222 cycles. 

DSS 34 2013-09-17T23:35:00 

2013-09-18T03:45:00 

Sequential Range degraded: Constant range bias increased from 0.0 to 

40 m. 

DSS 34 2013-09-26T07:45:00 

2013-09-26T08:45:00 

Total Count Phase (Doppler) degraded: Measurement white noise root 

variance increased from 0.003 to 0.01111 cycles, bias of 0.012 cycles 

added. 

Sequential Range degraded: Bias sigma increased from 1.5 m to 22 m. 

DSS 34 2013-09-27T07:45:00 

2013-09-27T08:45:00 

Total Count Phase (Doppler) degraded: Measurement white noise root 

variance increased from 0.003 to 0.077 cycles. 

DSS 54 2013-09-29T12:40:00 

2013-09-29T18:40:00 

Sequential Range degraded: Measurement white noise root variance 

increased from 1.5 m to 13.7 m.  

DSS 65 2013-09-30T10:05:00 

2013-09-30T19:20:00 

Total Count Phase (Doppler) degraded: Measurement white noise root 

variance increased from 0.003 to 0.0888 cycles. 

DSS 45 2013-10-01T01:30:00 

2013-10-01T09:40:00 

Sequential Range degraded: Measurement white noise root variance 

increased from 0.5 m to 9.4 m. 

DSS 34 2013-10-01T21:15:00 

2013-10-02T07:45:00 

Sequential Range degraded: Constant range bias increased from 0.0 to 

717 m. 

 

The Lunar Apogee Maneuver 1 (LAM-1) was part of the mission timeline after LOI to be used 

to correct for off-nominal performance of the LOI-1 maneuver and place LADEE in the correct 

orbit to perform the LOI-2 maneuver. Following a near-nominal LOI-1 maneuver, the LAM-1 

maneuver could be waived (which was the case during the actual mission). During the ORT-3 

test, the simulated LOI-1 maneuver was biased to be 7% hot. The overburn lowered the aposelene 

and reduced the amount of periselene decay (due to Earth gravity perturbations) which was need-

ed to lower LADEE’s periselene to the altitude required for the LOI-2 maneuver. This 7% ma-

neuver over-performance was detected by the Flight Dynamics Team through examination of the 

orbit determination results. The post LOI-1 trajectory was then examined by the trajectory design 

team and the need for the LAM-1 maneuver was determined. LAM-1 was subsequently planned, 

executed, and reconstructed during the ORT, followed by the planning of the LOI-2 maneuver. 

The orbit determination team determined LAM-1 to be about 1% cold with a small directional 

error. 
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Table 8. Trajectory anomalies for ORT-3. 

Source Start/Stop Description 

Cp N/A 

N/A 

Solar pressure variation: The solar pressure coefficient was allowed to 

vary during the simulation based on the generation of a random sto-

chastic sequence. The nominal one sigma value for the time dependent 

variation was set to 13% of the nominal value and the time correlation 

half-life was 2 days. 

LOI-1 2013-10-06T11:48:21 

2013-10-06T11:52:45 

LOI-1 Perturbation: The nominal LOI-1 burn was biased to be 7% hot 

with a small random directional error (1 sigma = 0.25 degrees). 

LAM-1 2013-10-08T11:50:20 

2013-10-08T11:50:55 

LAM-1 Perturbation: A LAM maneuver opportunity was utilized based 

on orbit determination results following the LOI-1 maneuver. The 

planned LAM-1 burn was biased to be 1.5% cold with very small di-

rectional error of 0.055 degrees. 

 

Table 9. Tracking data anomalies for ORT-3. 

Station Start/Stop Description 

DSS 54 2013-10-06T09:04:49 

2013-10-06T11:16:05 

Total Count Phase (Doppler) degraded: Measurement white noise root 

variance increased from 0.003 to 0.07 cycles. 

Sequential ranging degraded: Measurement white noise root variance 

increased from 1.5 to 18 meters. 

DSS 54 2013-10-07T10:07:59 

2013-10-07T11:11:48 

Sequential ranging degraded: Constant range bias increased from 0.0 to 

1.8 Km. 

DSS65 2013-10-08T11:38:16 

2013-10-08T19:05:00 

Sequential ranging degraded: Measurement white noise root variance 

increased from 0.005 to 30 meters. 

 

ORT-5: Science Phase Activities 

The ORT-5 test time period covered the sixth in a series of Orbit Maintenance Maneuvers 

(OMM) that were performed after LADEE entered its lunar science orbit. The baseline trajectory 

for ORT-5 was selected as the nominal launch trajectory in order to allow for the use of the nom-

inal station contact schedule and nominal OMM-6 plan. The OMM-6 uplink time was placed pri-

or to the start of the ORT-5 test period. Tracking data generation began 11 days prior to the start 

of the ORT test period. The ORT-6 truth trajectory followed the nominal trajectory up to the ORT 

start time at which point numerical integration of the remainder of the ORT-5 truth trajectory be-

gan. The ORT-5 truth trajectory was allowed to deviate at this point from the selected baseline 

trajectory due to differences in solar pressure modeling and off-nominal performance of the 

OMM-6 burn. Details of the acceleration anomalies included in the ORT-5 truth trajectory are 

described in further detail in Table 10. Tracking data anomalies for ORT-5 are shown in Table 

11. Trajectory generation and orbit determination for ORT-5 was performed using the Moon as 

the primary central body. 
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Table 10. Trajectory anomalies for ORT-5. 

Source Start/Stop Description 

Cp N/A 

N/A 

Solar pressure variation: The solar pressure coefficient was allowed to 

vary during the simulation based on the generation of a random sto-

chastic sequence. The nominal one sigma value for the time dependent 

variation was set to 13% of the nominal value and the time correlation 

half-life was 2 days. 

OMM-6 2013-12-27T04:06:59 

2013-12-27T04:07:32 

OMM-6 Perturbation: The nominal OMM-6 burn was biased to be 2% 

cold with a small random directional error (1 sigma = 0.25 degrees). 

 

Table 11. Tracking data anomalies for ORT-5. 

Station Start/Stop Description 

DSS 65 2013-12-24T04:10:38 

2013-12-24T05:10:38 

Total Count Phase (Doppler) degraded: Measurement white noise root 

variance increased from 0.003 to 0.015 cycles. 

DSS 65 2013-12-24T06:08:58 

2013-12-24T07:08:58 

Total Count Phase (Doppler) degraded: Measurement white noise root 

variance increased from 0.003 to 0.015 cycles. 

DSS45 2013-12-24T17:52:30 

2013-12-24T18:22:30 

Total Count Phase (Doppler) degraded: Surface refractivity in the 

troposphere model decreased by 13%. 

DSS45 2013-12-24T23:37:30 

2013-12-25T00:07:30 

Total Count Phase (Doppler) degraded: Surface refractivity in the 

troposphere model decreased by 13%. 

DSS 65 2013-12-25T03:19:58 

2013-12-25T04:19:58 

Total Count Phase (Doppler) degraded: Measurement white noise root 

variance increased from 0.003 to 0.02 cycles. 

DSS 65 2013-12-25T05:15:00 

2013-12-25T06:15:00 

Total Count Phase (Doppler) degraded: Measurement white noise root 

variance increased from 0.003 to 0.02 cycles. 

DSS45 2013-12-26T19:45:30 

2013-12-26T20:15:30 

Total Count Phase (Doppler) degraded: Surface refractivity in the 

troposphere model decreased by 10%. 

DSS45 2013-12-26T23:36:30 

2013-12-27T00:06:30 

Total Count Phase (Doppler) degraded: Surface refractivity in the 

troposphere model decreased by 10%. 

DSS54 2013-12-27T05:22:43 

2013-12-27T06:22:43 

Sequential Range degraded: Constant transponder bias increased from 

zero to 187 ns. 

DSS65 2013-12-28T04:45:21 

2013-12-28T05:45:21 

Total Count Phase (Doppler) degraded: Measurement white noise root 

variance increased from 0.003 to 0.007 cycles. 

DSS65 2013-12-28T06:42:16 

2013-12-28T07:42:16 

Total Count Phase (Doppler) degraded: Measurement white noise root 

variance increased from 0.003 to 0.007 cycles. 

 

FLIGHT DYNAMICS TEAM PERFORMANCE 

The entire Flight Dynamics Team, and specifically the Orbit Determination team members 

who processed the simulated tracking data, gained useful and relevant experience through the 
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ORTs. The tracking simulations with anomalies allowed the team to exercise the flight dynamics 

processes and tools in a true operational sense. The team needed to use the Ames Flight Dynam-

ics System to process the tracking data, compare the data received was as expected, perform 

tracking system calibration, perform maneuver reconstruction, and then report their finding and 

output to the Mission Operations Management Team through operational-like meetings and via 

an anomaly tracking system.  

As a result of the ORTs, the Flight Dynamics Team made several improvements to the Flight 

Dynamics System and operational documentation for improved Flight Operations. Updates were 

made to the Flight Dynamics System procedures, which consist of software workflows and 

scripts. The team uncovered areas in the workflow scripts that needed to be streamlined, such as 

creating more useful and quick-turnaround graphical outputs for decision-making. Errors in 

scripts, detected during the examination of realistic data outputs, were corrected and tested for use 

in Flight Operations. Additionally, because of the ORTs’ flight-like processing environment, the 

Flight Dynamics Team made updates to their team logging interface, the “Virtual Whiteboard”. 

These improvements provided clarification in communications indicating which data products 

were completed and validated for use, both between team members on the same shift, and for 

shift handovers. Furthermore, the Flight Dynamics Team was able to update their Handbook after 

the ORTs, adding information where it was lacking and clarifying previously confusing content 

based on their experience using the Handbook in the flight-like environment.   

As described in the ORT sections, each ORT was designed to present specific orbit determina-

tion challenges. Several of the reported anomalies are described below from ORT-1. The anomaly 

reports are presented here as documented during the execution of the ORTs with only minor edit-

ing for format and typographical corrections. 

[LADOPS-531] Constant Transponder Range Bias is now trending in OD plots 

The OD Filter tuning process has uncovered a Transponder Range Bias. The constant bias is 

550 meters, +/- 120 meters, 3-sigma. This constant bias is now consistently working as part of 

our solution throughout the beginning of the mission. We will continue to monitor this, and 

will adjust (lower) the sigma on this if possible, or adjust the Constant Bias if we see that it is 

trending away from 550 meters.  

Attached is the Transponder range bias graph, Figure 4, in terms of nano seconds. The "zero" 

line on the Y axis is the Constant Bias. The Constant Bias (zero line on Y axis) is 1834.6 na-

noseconds, or 550 meters. The blue line is the estimated bias off of that constant bias through-

out the timeline. An estimate of the transponder bias is updated whenever the filter has accept-

ed range tracking data. 

https://vector.arc.nasa.gov:8443/browse/LADOPS-531
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Figure 4. Initial Detection of LADEE Transponder Bias. 

 

[LADOPS-530] HBK elevation measurements seemed outside of normal bounds for short 

period of time 

On Sept 7 08:06 through 08:14 the elevation measurements from the HBK antenna are being 

rejected from the OD Filter. We have not correlated this time to any other events that would 

indicate a required change in our modeling. Just wanted to note this. The priority of going 

back and looking into this is low, since it is less than 10 minutes of data. But we wanted to 

note it. A graph, Figure 5, of the few minutes of the HBK data is attached, for reference, to ac-

company the description of this anomaly report. 

 

Figure 5. Detection of Degraded Angle Measurements. 

 

https://vector.arc.nasa.gov:8443/browse/LADOPS-530
https://vector.arc.nasa.gov:8443/browse/LADOPS-530
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[LADOPS-529]  DSS27 Sequential Range Bias 

All of the sequential range data from the DSS27 Sep 7 @18:13:16 to Sep 8 @ 00:44:56 con-

tact is being rejected from the OD solution. It is showing a constant bias of about 1.7 km, and 

which ranges from about 20 to 30-sigma during that portion of the solution. We are choosing 

not to set a constant bias on this antenna at this time (which would force the Filter to include 

this data). We are allowing the rejection to occur, and instead report this as an anomaly. 

Attached is a residual ratios graph, Figure 6. This version of the graph is plotting all of the re-

siduals from all stations, for all measurement types, using the current (as of Sep 8, 08:28 

UTC) statistics settings including the transponder bias settings. The wavy brown line that is 

way above where all of the other colors are mashed up is the DSS27 range residuals that the 

filter is rejecting. The second contact we had on DSS-27 did not have the range bias. The 

range data was accepted without any problems during the second contact with DSS-27. 

 

Figure 6. Detection of Anomalous Range Bias. 

 

[LADOPS-533] Noisy Doppler on DSS34 Sep 8 00:35-10:10 

Reported noisy TCP (Doppler) data from the DSS34 antenna from the second contact we had 

with that antenna. This behavior was not observed in the measurements during the first DSS34 

contact on Sep 7th. Attached is a plot of all of the Doppler (TCP) measurements, Figure 7, re-

ceived from all of the DSN antennas thus far. The last contact was on DSS34 and there is 

much noisier Doppler during this contact. One question to ask the DSN is to find out if the sta-

tion performed their antenna calibration prior to this pass, like they were scheduled to do. If 

not, it is possible that something could be off that would make this occur.  

Maneuver reconstruction 

The Flight Dynamics Team was also able to successfully reconstruct the maneuver perfor-

mances from the orbit determination estimates during the ORTs. Below are two examples from 

Maneuver Assessment Meeting presentations during the ORTs. Table 12 shows the results from 

ORT-2’s PM3 maneuver assessment. Table 13 describes the results from ORT-3’s LOI-1 maneu-

ver. The orbit determination and maneuver planning team members were able to exercise a flight-

like maneuver reconstruction process, and then the results presented in the flight-like meeting. 

This whole experience enabled the team members to practice working through the challenges and 

results on a flight-like timeline, and practice communicating those results within the mission op-

erations team.   
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Figure 7. Detection of Degraded TCP Performance. 

 

Table 12. ORT-2 Maneuver Assessment from OD Results at PM-3 Plus 7 Hours. 

Key Parameters Expected Value Recovery From Tracking Data 

Main Burn Start Time 01 Oct 2013 20:54:39.000  

Main Burn Duration 10.944 sec  

Main Burn DV (m/s) 17.0 m/s 16.5 m/s 

Performance Error Nominal Burn (0%) 3.1% Cold 

Pointing Error 0 deg 0.4 deg pointing error 

Duty Cycle 92% Off-Pulse 

10% On-Pulse 

 

Post-Maneuver Propellant Mass 130.1 kg (TAO Estimate) 

130.1 kg (Prop Estimate) 
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Table 13. ORT-3 Maneuver Assessment from OD Results at LOI-1 Plus 12 Hours. 

Key Parameters Expected Value Recovery 

Maneuver LOI1 LOI1 

Main Burn Start Time 06 Oct 2013 11:48:42.000  06 Oct 2013 

11:48:43.011480  

 (first telemetry point) 

Main Burn Duration 243.014 s 243.014 s From Telemetry 

Main Burn DV (m/s) 332.75 m/s 356 m/s 

Propulsion Performance  7% Hot – tracking data 

13% Hot – telemetry 

TSF = 1.07 

Pointing Error 0 deg 1.5-1.8 deg pointing error 

LAM1 Needed  Yes, 14.5 m/s 

To lower periselene Alt by 

~330 km 

LOI2  Adjusted for LAM1 burn  

~10 Oct 2013 11:47:25 

Post-Maneuver Orbit Details 

(at apse following LOI1) 

Period = 24.0 hrs 

Perigee altitude = 450 km 

Apogee altitude = 15598 km 

Period = 19 hrs 

Periapsis altitude = 642 km 

Apoapsis altitude =  12806 

km 

 

CONCLUSION 

The generation and use of simulated spacecraft trajectories and corresponding tracking data al-

lowed for the use of consistent true and estimated spacecraft positional information across all 

groups involved in the LADEE Operational Readiness Tests. Anomalies introduced into maneu-

ver execution, environmental effects, and tracking system phenomenology provided stressing 

challenges for the Flight Dynamics Team to overcome in a simulated real-time environment using 

the soon to be operational Flight Dynamics System. The ability of the flight dynamics, mission 

planning, spacecraft engineering, real-time operations, and mission operations management teams 

to overcome these challenges and deliver accurate flight dynamics products provided reasonable 

assurance that the team and flight dynamics system were ready to fly the LADEE mission. 
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