Open MCT Web Tutorials

Victor Woeltjen

victor.woeltien@nasa.gov

July 28, 2015
Document Version 2.0

Date Version | Summary of Changes Author

May 12, 2015 0 Initial Draft Victor Woeltjen
June 4, 2015 1.0 Name changes Victor Woeltjen
July 28, 2015 2.0 Telemetry adapter tutorial Victor Woeltjen

Introduction
Setting Up Open MCT Web
Prerequisites
Check out Open MCT Web Sources
Configuring Persistence
Run a Web Server
Viewing in Browser
Tutorials
To-do List
Step 1. Create the Plugin
Step 2. Add a Domain Object Type
Step 3. Add a View
Step 4. Add a Controller
Step 5. Support Editing
Step 6. Customizing Look and Feel
Bar Graph
Step 1. Define the View
Step 2. Add a Controller
Step 3. Using Telemetry Data
Step 4. View Configuration
Telemetry Adapter
Step 0. Expose Your Telemetry
Step 1. Add a Top-level Object
Step 2. Expose the Telemetry Dictionary
Step 3. Historical Telemetry
Step 4. Real-time Telemetry

Introduction

Setting Up Open MCT Web

In this section, we will cover the steps necessary to get a minimal Open MCT Web
developer environment up and running. Once we have this, we will be able to proceed with
writing plugins as described in this tutorial.

Prerequisites

This tutorial assumes you have the following software installed. Version numbers record
what was used in writing this tutorial; the same steps should work with more recent versions, but
this cannot be guaranteed.

Node.js v0.12.2: https://nodejs.org/

git v1.8.3.4: http://git-scm.com/

Google Chrome v42: https://www.google.com/chrome/
A text editor.

Open MCT Web can be run without any of these tools, provided suitable alternatives are
taken; see the Open MCT Web Developer Guide for a more general overview of how to run and
deploy a Open MCT Web application.

Check out Open MCT Web Sources

First step is to check out Open MCT Web from the source repository.
git clone https://github.com/nasa/openmctweb.git openmctweb

This will create a copy of the Open MCT Web source code repository in the folder
openmctweb (relative to the path from which you ran the command.)

If you have a repository URL, use that as the “path to repo” above. Alternately, if you
received Open MCT Web as a git bundle, the path to that bundle on the local filesystem can be
used instead.

At this point, it will also be useful to branch off of Open MCT Web v0.6.2 (which was
used when writing these tutorials) to begin adding plugins.

cd openmctweb
git branch <my branch name> open-v0.6.2

https://nodejs.org/
http://git-scm.com/
https://www.google.com/chrome/

git checkout <my branch name>

Configuring Persistence

In its default configuration, Open MCT Web will try to use ElasticSearch (expected to be
deployed at /elastic onthe same HTTP server running Open MCT Web) to persist
user-created domain objects. We don’t need that for these tutorials, so we will replace the
ElasticSearch plugin with the example persistence plugin. This doesn’t actually persist, so
anything we create within Open MCT Web will be lost on reload, but that’s fine for purposes of
these tutorials.

To change this configuration, edit bundles. json (at the top level of the Open MCT
Web repository) and replace platform/persistence/elastic with
example/persistence.

Before After

"platform/framework",
"platform/core",
"platform/representation",
"platform/commonUI/about",
"platform/commonUI/browse",
"platform/commonUI/edit",
"platform/commonUI/dialog",
"platform/commonUI/general",
"platform/containment",
"platform/telemetry",
"platform/features/layout",
"platform/features/pages",
"platform/features/plot",
"platform/features/scrolling",
"platform/forms",
"platform/persistence/queue",

"platform/policy",

"example/generator"

"platform/framework",
"platform/core",
"platform/representation",
"platform/commonUI/about",
"platform/commonUI/browse",
"platform/commonUI/edit",
"platform/commonUI/dialog",
"platform/commonUI/general",
"platform/containment",
"platform/telemetry",
"platform/features/layout",
"platform/features/pages",
"platform/features/plot",
"platform/features/scrolling",
"platform/forms",
"platform/persistence/queue",
"platform/policy",

"example/persistence",
"example/generator"

bundles. json

Run a Web Server

The next step is to run a web server so that you can view the Open MCT Web client
(including the plugins you add to it) in browser. The HTTP server option that is recommended
here, for simplicity, is http-server, https://www.npmjs.com/package/http-server.

To run:
npm install http-server -g
http-server <path to Open MCT Web repository>

Viewing in Browser

Once running, you should be able to view Open MCT Web from your browser at
http://localhost:8080/. Google Chrome (https://www.google.com/chrome/) is recommended for
these tutorials, as Chrome is Open MCT Web’s “test-to” browser.

The browser cache can sometimes interfere with development (masking changes by
using older versions of sources); to avoid this, it is easiest to run Chrome with Developer Tools
expanded, and “Disable cache” selected from the Network tab, as shown below.

https://www.npmjs.com/package/http-server
http://localhost:8080/
https://www.google.com/chrome/

o

800 ’ ehrrp:fflocalhust:sﬂsw is o %\ |i| e

& = C [localhost:8080

% Create
[My ltems

Q D Elements | Network | Sources Timeline Profiles Resources Audits Console Q1)= # |E|‘ x
® O W = = [Preserve log ¥ Disable cache

| XHR Script Style Images Media Fonts Documents WebSockets Other [Hide data URL
Name A Met... S5tatus Type | Initiator Size Time Timeline 1.00s
_uuid.js GET 200 appl... reguire.js:... 1.5KB 18ms T l
L] widsymbols.woff GET 200 appl... angular.js... 7.1KB 4ms 1
245 requests | 1.3 MB transferred | Finish: 1.15s | DOMContentLoaded: 26 ms | Load: 25 ms
Console | Search Emulation Rendering

Tutorials

These tutorials cover three of the common tasks in Open MCT Web:

The “to-do list” tutorial illustrates how to add a new application feature.
The “bar graph” tutorial illustrates how to add a new telemetry visualization.
The “data set reader” tutorial illustrates how to integrate with a telemetry backend.

To-do List

The goal of this tutorial is to add a new application feature to Open MCT Web: To-do
lists. Users should be able to create and manage these to track items that they need to do. This
is modelled after the to-do lists at http://todomvc.com/.

http://todomvc.com/

Step 1. Create the Plugin

The first step to adding a new feature to Open MCT Web is to create the plugin which
will expose that feature. A plugin in Open MCT Web is represented by what is called a bundle; a
bundle, in turn, is a directory which contains a file bundle. json, which in turn describes where
other relevant sources & resources will be. The syntax of this file is described in more detail in
the Open MCT Web Developer Guide.

We will create this file in the directory tutorials/todo (we can hereafter refer to this
plugin as tutorials/todo as well.) We will start with an “empty bundle” - one which exposes
no extensions - which looks like:

"name": "To-do Plugin",

"description":

"extensions": {

"Allows creating and editing to-do lists.",

tutorials/todo/bundle. json

We will also include this in our list of active bundles.

Before

"platform/framework",
"platform/core",
"platform/representation",
"platform/commonUI/about",
"platform/commonUI/browse",
"platform/commonUI/edit",
"platform/commonUI/dialog",
"platform/commonUI/general",
"platform/containment",
"platform/telemetry",

"platform/features/layout",
"platform/features/pages",
"platform/features/plot",
"platform/features/scrolling",
"platform/forms",
"platform/persistence/queue",
"platform/policy",

"example/persistence",
"example/generator"

After

"platform/framework",
"platform/core",
"platform/representation",
"platform/commonUI/about",
"platform/commonUI/browse",
"platform/commonUI/edit",
"platform/commonUI/dialog",
"platform/commonUI/general",
"platform/containment",
"platform/telemetry",
"platform/features/layout",
"platform/features/pages",
"platform/features/plot",
"platform/features/scrolling",
"platform/forms",
"platform/persistence/queue",
"platform/policy",

"example/persistence",
"example/generator",

"tutorials/todo"

bundles. json

At this point, we can reload Open MCT Web. We haven't introduced any new
functionality, so we don’t see anything different, but if we run with logging enabled
(http://localhost:8080/?log=info) and check the browser console, we should see:

Resolving extensions for bundle tutorials/todo (To-do Plugin)

...which shows that our plugin has loaded.

Step 2. Add a Domain Object Type

Features in a Open MCT Web application are most commonly expressed as domain
objects and/or views thereof. A domain object is some thing that is relevant to the work that the
Open MCT Web application is meant to support. Domain objects can be created, organized,
edited, placed in layouts, and so forth. (For a deeper explanation of domain objects, see the
Open MCT Web Developer Guide.)

In the case of our to-do list feature, the to-do list itself is the thing we’ll want users to be
able to create and edit. So, we will add that as a new type in our bundle definition:

"name": "To-do Plugin",
"description": "Allows creating and editing to-do lists.",
"extensions": {
"types": [
{

"key": "example.todo",

"name": "To-Do List",

" glyPhH : " j " ,

"description": "A list of things that need to be done.",
"features": ["creation"]

http://localhost:8080/?log=info

tutorials/todo/bundle. json

What have we done here? We've stated that this bundle includes extensions of the
category types, which is used to describe domain object types. Then, we’ve included a
definition for one such extension, which is the to-do list object.

Going through the properties we’ve defined:

e The key of example.todo will be stored as the machine-readable name for domain
objects of this type.

e The name of “To-Do List” is the human-readable name for this type, and will be shown to
users.

e The glyph refers to a special character in Open MCT Web’s custom font set; this will be
used as an icon.

e The description is also human-readable, and will be used whenever a longer
explanation of what this type is should be shown.

e Finally, the features property describes some special features of objects of this type.
Including creation here means that we want users to be able to create this (in other
cases, we may wish to expose things as domain objects which aren’t user-created, in
which case we would omit this.)

If we reload Open MCT Web, we see that our new domain object type appears in the
Create menu:

== Create

Folder

Display Layout
Telemetry Panel
Web Page

Sine Wave Generator

To-Do List
To-Do List

At this point, our to-do list doesn’t do much of anything; we can create them and give
them names, but they don’t have any specific functionality attached, because we haven’t
defined any yet.

Step 3. Add a View

In order to allow a to-do list to be used, we need to define and display its contents. In
Open MCT Web, the pattern that the user expects is that they’ll click on an object in the
left-hand tree, and see a visualization of it to the right; in Open MCT Web, these visualizations
are called views.

A view in Open MCT Web is defined by an Angular template. We’ll add that in the
directory tutorials/todo/res/templates (res is, by default, the directory where
bundle-related resources are kept, and templates is where HTML templates are stored by
convention.)

All

Incomplete

Complete
</div>

<li ng-repeat="task in model.tasks">
<input type="checkbox" ng-checked="task.completed">
{{task.description}}
</1li>

tutorials/todo/res/templates/todo.html

A summary of what'’s included:

e At the top, we have some buttons that we will later wire in to allow the user to filter down
to either complete or incomplete tasks.

e After that, we have a list of tasks. The scope variable model is the model of the domain
object being viewed; this contains all of the persistent state associated with that object.
This model is effectively just a JSON document, so we can choose what goes into it (so
long as we take care not to collide with platform-defined properties; see the Open MCT
Web Developer Guide.) Here, we assume that all tasks will be stored in a property
tasks, and that each will be an object containing a description (the readable
summary of the task) and a boolean completed flag.

To expose this view in Open MCT Web, we need to declare it in our bundle definition:

"name": "To-do Plugin",
"description": "Allows creating and editing to-do lists.",
"extensions": {
"types": [
{
"key": "example.todo",
"name": "To-Do List",

"glyph" : "j",
"description": "A list of things that need to be done.",
"features": ["creation"]

1,
"views": [
{
"key": "example.todo",
"type": "example.todo",

llglyphll : Hj n ,
"name": "List",
"templateUrl": "templates/todo.html"

tutorials/todo/bundle. json

Here, we’ve added another extension, this time belonging to category views. It contains
the following properties:

e |ts key is its machine-readable name; we’ve given it the same name here as the domain
object type, but could have chosen any unique name.

e The type property tells Open MCT Web that this view is only applicable to domain
objects of that type. This means that we'll see this view for To-do Lists that we create,
but not for other domain objects (such as Folders.)

e The glyph and name properties describe the icon and human-readable name for this
view to display in the Ul where needed (if multiple views are available for To-do Lists, the
user will be able to choose one.)

e Finally, the templateUrl points to the Angular template we wrote; this path is relative
to the bundle’s res folder.

This template looks like it should display tasks, but we don’t have any way for the user to
create these yet. As a temporary workaround to test the view, we will specify an initial state for
To-do List domain object models in the definition of that type.

"name": "To-do Plugin",
"description": "Allows creating and editing to-do lists.",
"extensions": {
"types": [
{
"key": "example.todo",
"name": "To-Do List",

quyphn : "j"/

"description": "A list of things that need to be done.",
"features": ["creation"],
"model": {
"tasks": [
{ "description": "Add a type", '"completed": true },
{ "description": "Add a view" }

[

"key": "example.todo",
"type": "example.todo",

Hglyphvv . vav’

"name": "List",
"templateUrl": "templates/todo.html"

tutorials/todo/bundle. json

Now, when To-do List objects are created in Open MCT Web, they will initially have the
state described by that mode1 property.

If we reload Open MCT Web, create a To-do List, and navigate to it in the tree, we
should now see:

%~ To-Do List Unnamed To-Do List
All

¥%Z Unnamed To-Do List

This looks roughly like what we want. We’ll handle styling later, so let’'s work on adding
functionality. Currently, the filter choices do nothing, and while the checkboxes can be
checked/unchecked, we're not actually making the changes in the domain object - if we click
over to My Items and come back to our To-Do List, for instance, we’ll see that those check
boxes have returned to their initial state.

Step 4. Add a Controller

We need to do some scripting to add dynamic behavior to that view. In particular, we
want to:

e Filter by complete/incomplete status.
e Change the completion state of tasks in the model.

To do this, we will support this by adding an Angular controller. (See
https://docs.angularjs.org/guide/controller for an overview of controllers.) We will define that in
an AMD module (see http://requirejs.org/docs/whyamd.html) in the directory
tutorials/todo/src/controllers (src is, by default, the directory where bundle-related
source code is kept, and controllers is where Angular controllers are stored by convention.)

define (function () {
function TodoController ($scope) {
var showAll = true,
showCompleted;

// Persist changes made to a domain object's model
function persist () {
var persistence =
Sscope.domainObject.getCapability ('persistence') ;
return persistence && persistence.persist();

// Change which tasks are visible
Sscope.setVisibility = function (all, completed) {
showAll = all;
showCompleted = completed;
}i

// Toggle the completion state of a task
Sscope.toggleCompletion = function (taskIndex) {
Sscope.domainObject.useCapability ('mutation', function (model) ({
var task = model.tasks[taskIndex];
task.completed = !task.completed;

1) ;
persist () ;
}i

// Check whether a task should be visible
Sscope.showTask = function (task) {

return showAll || (showCompleted === !! (task.completed)):;
}i

return TodoController;
});

tutorials/todo/src/controllers/TodoController. js

Here, we’ve defined three new functions and placed them in our Sscope, which will
make them available from the template:

https://docs.angularjs.org/guide/controller
http://requirejs.org/docs/whyamd.html

e setVisibility changes which tasks are meant to be visible. The first argumentis a
boolean, which, if true, means we want to show everything; the second argument is the
completion state we want to show (which is only relevant if the first argument is falsy.)

e toggleCompletion changes whether or not a task is complete. We make the change
via the domain object’'s mutation capability, and then persist the change via its
persistence capability. See the Open MCT Web Developer Guide for more
information on these capabilities.

e showTask is meant to be used to help decide if a task should be shown, based on the
current visibility settings. It is true when we have decided to show everything, or when
the completion state matches the state we’ve chosen. (Note the use of the double-not !!
to coerce the completed flag to a boolean, for equality testing.)

Note that these functions make reference to $scope.domainObject; this is the
domain object being viewed, which is passed into the scope by Open MCT Web prior to our
template being utilized.

On its own, this controller merely exposes these functions; the next step is to use them
from our template:

<div ng-controller='"TodoController">
<div>
<a ng-click="setVisibility (true)">All
<a ng-click="setVisibility(false, false)">Incomplete
<a ng-click="setVisibility (false, true)">Complete
</div>

<li ng-repeat="task in model.tasks"
ng-if="showTask (task) ">
<input type="checkbox"
ng-checked="task.completed"
ng-click="toggleCompletion ($index) ">
{{task.description}}
</1li>

</div>

tutorials/todo/res/templates/todo.html

Summary of changes here:

e First, we surround everything in a div which we use to utilize our TodoController.
This div will also come in handy later for styling.

e From our filters at the top, we change the visibility settings when a different option is
clicked.

e When showing tasks, we check with showTask to see if the task matches current filter
settings.

e Finally, when the checkbox for a task is clicked, we make the change in the model via
toggleCompletion.

If we were to try to run at this point, we’d run into problems because the
TodoController has not been registered with Angular. We need to first declare it in our
bundle definition, as an extension of category controllers:

"name": "To-do Plugin",
"description": "Allows creating and editing to-do lists.",
"extensions": {
"types": [
{
"key": "example.todo",
"name": "To-Do List",
"glyph": "j",
"description": "A list of things that need to be done.",
"features": ["creation"],
"model": {
"tasks": [
{ "description": "Add a type", "completed": true
{ "description": "Add a view" }

"key": "example.todo",

"type": "example.todo",

"glyph": "j",

"name": "List",

"templateUrl": "templates/todo.html"

1,

"controllers": [

{

"key": "TodoController",
"implementation": "controllers/TodoController.js",
"depends": ["$scope"]

tutorials/todo/bundle. json

In this extension definition we have:

e A key, which again is a machine-readable identifier. This is the name that templates will
reference.

e An implementation, which refers to an AMD module. The path is relative to the src
directory within the bundle.

e The depends property declares the dependencies of this controller. Here, we want
Angular to inject sscope, the current Angular scope (which, going back to our controller,
is expected as our first argument.)

If we reload the browser now, our To-do List looks much the same, but now we are able
to filter down the visible list, and the changes we make will stick around if we go to My Items and
come back.

Step 5. Support Editing

We now have a somewhat-functional view of our To-Do List, but we’re still missing some
important functionality: Adding and removing tasks!

This is a good place to discuss the user interface style of Open MCT Web. Open MCT
Web draws a distinction between “using” and “editing” a domain object; in general, you can only
make changes to a domain object while in Edit mode, which is reachable from the button with a
pencil icon. This distinction helps users keep these tasks separate.

The distinction between “using” and “editing” may vary depending on what domain
objects or views are being used. While it may be convenient for a developer to think of “editing”
as “any changes made to a domain object,” in practice some of these activities will be thought of
as “using.”

For this tutorial we’ll consider checking/unchecking tasks as “using” To-Do Lists, and
adding/removing tasks as “editing.” We’ve already implemented the “using” part, in this case, so
let’s focus on editing.

There are two new pieces of functionality we’ll want out of this step:

The ability to add new tasks.
The ability to remove existing tasks.

An Editing user interface is typically handled in a tool bar associated with a view. The
contents of this tool bar are defined declaratively in a view’s extension definition.

"name": "To-do Plugin",

"description": "Allows creating and editing to-do lists.",
"extensions": {
"types": [
{
"key": "example.todo",
"name": "To-Do List",
"glyph": "j",
"description": "A list of things that need to be done.",
"features": ["creation"],
"model": {
"tasks": [
{ "description": "Add a type", "completed": true },
{ "description": "Add a view" }

"key": "example.todo",
"type": "example.todo",
"glyph" : "j " 0
"name": "List",
"templateUrl": "templates/todo.html",
"toolbar": {
"sections": [
{
"items": [
{
"text": "Add Task",
" glyth : H+H ,
"method": "addTask",
"control": "button"

" glyth : HZH ,
"method": "removeTask",
"control": "button"

1,
"controllers": [
{
"key": "TodoController",
"implementation": "controllers/TodoController.]

"depends": ["Sscope"]

tutorials/todo/bundle. json

What we've stated here is that the To-Do List’s view will have a toolbar which contains
two sections (which will be visually separated by a divider), each of which contains one button.
The first is a button labelled “Add Task” that will invoke an addTask method; the second is a
button with a glyph (which will appear as a trash can in Open MCT Web’s custom font set)
which will invoke a removeTask method. For more information on forms and tool bars in Open
MCT Web, see the Open MCT Web Developer Guide.

If we reload and run Open MCT Web, we won'’t see any tool bar when we switch over to
Edit mode. This is because the aforementioned methods are expected to be found on
currently-selected elements; we haven’t done anything with selections in our view yet, so the
Open MCT Web platform will filter this tool bar down to all the applicable controls, which means
no controls at all.

To support selection, we will need to make some changes to our controller:

define (function () {
// Form to display when adding new tasks
var NEW_TASK FORM = {
name: "Add a Task",
sections: [{
rows: [{
name: 'Description',
key: 'description',
control: 'textfield',
required: true
}H
}H
};

function TodoController (Sscope, dialogService) ({
var showAll = true,
showCompleted;

// Persist changes made to a domain object's model
function persist () {
var persistence =
Sscope.domainObject.getCapability ('persistence') ;
return persistence && persistence.persist();

}

// Remove a task

function removeTaskAtIndex (taskIndex) ({
$scope.domainObject.useCapability ('mutation', function (model) ({
model. tasks.splice (taskIndex, 1)
b

persist() ;

// Add a task
function addNewTask (task) {
$scope.domainObject.useCapability ('mutation', function (model) ({
model . tasks.push (task) ;
b

persist() ;

// Change which tasks are visible
Sscope.setVisibility = function (all, completed) {
showAll = all;
showCompleted = completed;

};

// Toggle the completion state of a task
Sscope.toggleCompletion = function (taskIndex) ({
Sscope.domainObject.useCapability ('mutation', function (model) ({
var task = model.tasks[taskIndex];
task.completed = !task.completed;
}):
persist () ;

};

// Check whether a task should be visible
Sscope.showTask = function (task) {
return showAll || (showCompleted === !! (task.completed))

};

// Handle selection state in edit mode
if ($scope.selection) ({
// Expose the ability to select tasks
$scope.selectTask = function (taskIndex) {
$scope.selection.select ({
removeTask: function () ({
removeTaskAtIndex (taskIndex) ;
$scope.selection.deselect() ;

})
|

// Expose a view-level selection proxy
Sscope.selection.proxy ({
addTask: function () {
dialogService.getUserInput (NEW_TASK FORM, {})
. then (addNewTask) ;

}

return TodoController;

});

tutorials/todo/src/controllers/TodoController. js

There are a few changes to pay attention to here. Let’s review them:

e At the top, we describe the form that should be shown to the user when they click the
Add Task button. This form is described declaratively, and populates an object that has
the same format as tasks in the tasks array of our To-Do List's model.

e We've added an argument to the TodoController: The dialogService, which is
exposed by the Open MCT Web platform to handle showing dialogs.

e Some utility functions for handling the actual adding and removing of tasks. These use
the mutation capability to modify the tasks in the To-Do List’'s model.

e Finally, we check for the presence of a selection object in our scope. This object is
provided by Edit mode to manage current selections for editing. When it is present, we
expose a selectTask function to our scope to allow selecting individual tasks; when
this occurs, we expose an object to selection which has a removeTask method, as
expected by the tool bar we’ve defined. We additionally expose a view proxy, to handle
view-level changes (e.g. not associated with any specific selected object); this has an
addTask method, which again is expected by the tool bar we’ve defined.

Additionally, we need to make changes to our template to select specific tasks in
response to some user gesture. Here, we will select tasks when a user clicks the description.

<div ng-controller="TodoController">
<div>
<a ng-click="setVisibility (true)">All
<a ng-click="setVisibility(false, false)">Incomplete
<a ng-click="setVisibility(false, true)">Complete
</div>

<li ng-repeat="task in model.tasks"
ng-if="showTask (task) ">
<input type="checkbox"
ng-checked="task.completed"
ng-click="toggleCompletion ($index) ">

{{task.description}}

</1li>

</div>

tutorials/todo/res/templates/todo.html

Finally, the TodoController uses the dialogService now, so we need to declare
that dependency in its extension definition:

"name": "To-do Plugin",
"description": "Allows creating and editing to-do lists.",
"extensions": {
"types": [
{
"key": "example.todo",
"name": "To-Do List",
"glyph": "3",
"description": "A list of things that need to be done.",
"features": ["creation"],
"model": {
"tasks": [
{ "description": "Add a type", "completed": true },
{ "description": "Add a view" }

"key": "example.todo",
"type": "example.todo",
"glyph": "3",
"name": "List",
"templateUrl": "templates/todo.html",
"toolbar": {
"sections": [
{
"items": [
{
"text": "Add Task"
"glyph": "+",
"method": "addTask",
"control": "button"

lvglyth: HZ",

"method": "removeTask",
"control": "button"

}

1,

"controllers": [
{
"key": "TodoController",
"implementation": "controllers/TodoController.js",
"depends": ["Sscope", "dialogService"]

tutorials/todo/bundle. json

If we now reload Open MCT Web, we’ll be able to see the new functionality we’ve
added. If we Create a new To-Do List, navigate to it, and click the button with the Pencil icon in
the top-right, we’ll be in edit mode. We see, first, that our “Add Task” button appears in the tool

bar:
Edit To-Do List Unnamed To-Do List
Add Task

All Incomplete Complete
ﬂ _,f:'r'-i.ﬂ-: a tvpe

If we click on this, we’ll get a dialog allowing us to add a new task:

Add a Task
ATt narked % are reql

Add a tool bar|

Finally, if we click on the description of a specific task, we’ll see a new button appear,
which we can then click on to remove that task:

All Incomplete Complete

As always in Edit mode, the user will be able to Save or Cancel any changes they have
made.

In terms of functionality, our To-Do List can do all the things we want, but the
appearance is still lacking. In particular, we can’t distinguish our current filter choice or our
current selection state.

Step 6. Customizing Look and Feel

In this section, our goal is to:

e Display the current filter choice.

Display the current task selection (when in Edit mode.)
Tweak the general aesthetics to our liking.
Get rid of those default tasks (we can create our own now.)

To support the first two, we’ll need to expose some methods for checking these states in
the controller:

define (function () {
// Form to display when adding new tasks
var NEW TASK FORM = ({
name: "Add a Task",
sections: [{
rows: [{
name: 'Description',
key: 'description',
control: 'textfield',
required: true

function TodoController (Sscope, dialogService)
var showAll = true,
showCompleted;

// Persist changes made to a domain object's model
function persist () {
var persistence =
Sscope.domainObject.getCapability ('persistence') ;
return persistence && persistence.persist();

// Remove a task
function removeTaskAtIndex (taskIndex) {
Sscope.domainObject.useCapability ('mutation', function (model) {
model .tasks.splice (taskIndex, 1);
1) :

persist () ;

// Add a task
function addNewTask (task) {
Sscope.domainObject.useCapability ('mutation', function (model) {
model . tasks.push (task) ;
1) :

persist () ;

// Change which tasks are visible
Sscope.setVisibility = function (all, completed) {

showAll = all;
showCompleted = completed;
bi

// Check if current visibility settings match
$scope.checkVisibility = function (all, completed) ({
return showAll ? all : (completed === showCompleted) ;

|

// Toggle the completion state of a task
Sscope.toggleCompletion = function (taskIndex) ({
Sscope.domainObject.useCapability ('mutation', function (model) ({
var task = model.tasks[taskIndex];
task.completed = !task.completed;
}):
persist () ;

};

// Check whether a task should be visible
Sscope.showTask = function (task) {
return showAll || (showCompleted === !! (task.completed))

};

// Handle selection state in edit mode
if (Sscope.selection) {
// Expose the ability to select tasks
Sscope.selectTask = function (taskIndex) {
Sscope.selection.select ({
removeTask: function () {
removeTaskAtIndex (taskIndex) ;
Sscope.selection.deselect () ;
}/
taskIndex: taskIndex
})
}i

// Expose a check for current selection state
$scope.isSelected = function (taskIndex) {
return ($scope.selection.get() || {}).taskIndex ===

taskIndex;
}:

// Expose a view-level selection proxy
Sscope.selection.proxy ({
addTask: function () {
dialogService.getUserInput (NEW TASK FORM, {})
.then (addNewTask) ;

return TodoController;

tutorials/todo/src/controllers/TodoController. js

A summary of these changes:

e checkVisibility has the same arguments as setvVisibility, butinstead of
making a change, it simply returns a boolean true/false indicating whether those settings
are in effect. The logic reflects the fact that the second parameter is ignored when
showing all.

e To support checking for selection, the index of the currently-selected task is tracked as
part of the selection object.

e Finally, an isSelected function is exposed which checks if the indicated task is
currently selected, using the index from above.

Additionally, we will want to define some CSS rules in order to reflect these states
visually, and to generally improve the appearance of our view. We add another file to the res
directory of our bundle; this time, itis css/todo.css (with the css directory again being a
convention.)

.example-todo div.example-button-group {
margin-top: 12px;
margin-bottom: 12px;

.example-todo .example-button-group a {
padding: 3px;
margin: 3px;

.example-todo .example-button-group a.selected {
border: lpx gray solid;
border-radius: 3px;
background: #444;

.example-todo .example-task-completed .example-task-description ({
text-decoration: line-through;
opacity: 0.75;

.example-todo .example-task-description.selected {
background: #46A;
border-radius: 3px;

.example-todo .example-message {

font-style: italic;

tutorials/todo/res/css/todo.css

Here, we have defined classes and appearances for:

Ouir filter choosers (example-button-group).

Our selected and/or completed tasks (example-task-description).
A message, which we will add next, to display when there are no tasks
(example-message).

To include this CSS file in our running instance of Open MCT Web, we need to declare it
in our bundle definition, this time as an extension of category stylesheets:

"name": "To-do Plugin",
"description": "Allows creating and editing to-do lists.",
"extensions": {
"types": [
{
"key": "example.todo",
"name": "To-Do List",
"glyph": "3",
"description": "A list of things that need to be done.",
"features": ["creation"],
"model": {
"tasks": []

"key": "example.todo",
"type": "example.todo",
"glyph": "3",
"name": "List",
"templateUrl": "templates/todo.html",
"toolbar": {
"sections": [
{
"items": [
{
"text": "Add Task",
"glyph": "+",
"method": "addTask",
"control": "button"

"items": [

{

"glyphﬂ : HZH,
"method": "removeTask",
"control": "button"

1 4
"controllers": [
{
"key": "TodoController",
"implementation": "controllers/TodoController.js",
"depends": ["S$scope", "dialogService"]

1,
"stylesheets": [

{

"stylesheetUrl": "css/todo.css"

tutorials/todo/bundle. json

Note that we’ve also removed our placeholder tasks from the mode1l of the To-Do List’s
type above; now To-Do Lists will start off empty.

Finally, let’s utilize these changes from our view’s template:

<div ng-controller="TodoController" class="example-todo">
<div class="example-button-group">
<a ng-class="{ selected: checkVisibility (true) }"
ng-click="setVisibility (true)">All
<a ng-class="{ selected: checkVisibility(false, false) }"

ng-click="setVisibility(false, false)">Incomplete
<a ng-class="{ selected: checkVisibility(false, true) }"
ng-click="setVisibility(false, true)">Complete
</div>

<li ng-repeat="task in model.tasks"
ng-class="{ 'example-task-completed': task.completed }"
ng-if="showTask (task) ">
<input type="checkbox"
ng-checked="task.completed"
ng-click="toggleCompletion ($index) ">
<span ng-click="selectTask ($index)"
ng-class="{ selected: isSelected($index) }"
class="example-task-description">
{{task.description}}

</1li>

<div ng-if="model. tasks.length < 1" class="example-message'>
There are no tasks to show.
</diwv>
</div>

tutorials/todo/res/templates/todo.html

Now, if we reload our page and create a new To-Do List, we will initially see:

%= To-Do List Unnamed To-Do List

All| Incomplete Complete

¥ = Unnamed To-Do List

There are no

If we then go into Edit mode, add some tasks, and select one, it will now be much clearer
what the current selection is (e.g. before we hit the remove button in the toolbar):

Edit To-Do List Unnamed To-Do List

All| Incomplete Complete

Bar Graph

In this tutorial, we will look at creating a bar graph plugin for visualizing telemetry data.
Specifically, we want some bars that raise and lower to match the observed state of real-time
telemetry; this is particularly useful for monitoring things like battery charge levels.

It is recommended that the reader completes (or is familiar with) the To-Do List tutorial
before completing this tutorial, as certain concepts discussed there will be addressed in more
brevity here.

Step 1. Define the View

Since the goal is to introduce a new view and expose it from a plugin, we will want to
create a new bundle which declares an extension of category views. We'll also be defining
some custom styles, so we’ll include that extension as well. We’'ll be creating this plugin in
tutorials/bargraph, so our initial bundle definition looks like:

"name": "Bar Graph",
"description": "Provides the Bar Graph view of telemetry elements.",
"extensions": {
"views": [
{

"name": "Bar Graph",

"key": "example.bargraph",

"glyph": "H",

"templateUrl": "templates/bargraph.html",
"needs": ["telemetry" 1,

"delegation": true

"stylesheets": [
{

"stylesheetUrl": "css/bargraph.css"

tutorials/bargraph/bundle. json

The view definition should look familiar after the To-Do List tutorial, with some additions:

e The needs property indicates that this view is only applicable to domain objects with a
telemetry capability. This ensures that this view is available for telemetry points, but
not for other objects (like folders.)

e The delegation property indicates that the above constraint can be satisfied via
capability delegation; that is, by domain objects which delegate the telemetry
capability to their contained objects. This allows this view to be used for Telemetry Panel
objects as well as for individual telemetry-providing domain objects.

For this tutorial, we’ll assume that we've sketched out our template and CSS file ahead
of time to describe the general look we want for the view. These look like:

<div class="example-bargraph">
<div class="example-tick-labels">
<div class="example-tick-label" style="bottom: 0%">High</div>
<div class="example-tick-label" style="bottom: 50%">Middle</div>
<div class="example-tick-label" style="bottom: 100%">Low</div>
</div>

<div class="example-graph-area">
<div style="left: 0; width: 33.3%;" class="example-bar-holder">
<div class="example-bar" style="top: 25%; bottom: 50%;">
</div>
</div>
<div style="left: 33.3%; width: 33.3%;" class="example-bar-holder">
<div class="example-bar" style="top: 40%; bottom: 10%;">
</div>
</div>
<div style="left: 66.6%; width: 33.3%;" class="example-bar-holder">
<div class="example-bar" style="top: 30%; bottom: 40%;">
</div>
</div>
<div style="bottom: 50%" class="example-graph-tick">
</div>
</div>

<div class="example-bar-labels">
<div style="left: 0; width: 33.3%;"
class="example-bar-holder example-label">
Label A
</div>
<div style="left: 33.3%; width: 33.3%;"
class="example-bar-holder example-label">

Label B

</div>

<div style="left: 66.6%; width: 33.3%;"
class="example-bar-holder example-label">
Label C

</div>

</div>
</div>

tutorials/bargraph/res/templates/bargraph.html

Here, three regions are defined. The first will be for tick labels along the vertical axis,
showing the numeric value that certain heights correspond to. The second will be for the actual
bar graphs themselves; three are included here. The third is for labels along the horizontal axis,
which will indicate which bar corresponds to which telemetry point. Inline style attributes are
used wherever dynamic positioning (handled by a script) is anticipated.

The corresponding CSS file which styles and positions these elements:

.example-bargraph {
position: absolute;
top: O;
bottom: O0;
right: 0;
left: 0;
mid-width: 160px;
min-height: 160px;

.example-bargraph .example-tick-labels {
position: absolute;
left: 0O;
top: 24px;
bottom: 32px;
width: 72px;
font-size: 75%;

.example-bargraph .example-tick-label {
position: absolute;
right: 0;
height: lem;
margin-bottom: -0.5em;

padding-right: 6px;
text-align: right;

.example-bargraph .example-graph-area
position: absolute;
border: 1lpx gray solid;
left: 72px;
top: 24px;
bottom: 32px;
right: 0;

.example-bargraph .example-bar-labels
position: absolute;
left: 72px;
bottom: 0;
right: 0;
height: 32px;

.example-bargraph .example-bar-holder
position: absolute;
top: 0O;
bottom: 0;

.example-bargraph .example-graph-tick
position: absolute;
width: 100%;
height: 1px;
border-bottom: 1lpx gray dashed;

.example-bargraph .example-bar {
position: absolute;
background: darkcyan;
right: 4px;
left: 4px;

.example-bargraph .example-label {
text-align: center;
font-size: 85%;
padding-top: 6px;

}

tutorials/bargraph/res/css/bargraph.css

This is already enough that, if we add “tutorials/bargraph” to bundles.json, we should be
able to run Open MCT Web and see our Bar Graph as an available view for domain objects

which provide telemetry (such as the example Sine Wave Generator) as well as for Telemetry
Panel objects:

‘% Create] Example Panel Bar Graph

&% Example Panel

This means that our remaining work will be to populate and position these elements
based on the actual contents of the domain object.

Step 2. Add a Controller

Our next step will be to begin dynamically populating this template’s contents.
Specifically, our goals for this step will be to:

e Show one bar per telemetry-providing domain object (for which we’ll be getting actual
telemetry data in subsequent steps.)
Show correct labels for these objects at the bottom.
Show numeric labels on the left-hand side.

Notably, we will not try to show telemetry data after this step.
To support this, we will add a new controller which supports our Bar Graph view:
define (function () {

function BarGraphController (Sscope, telemetryHandler) {
var handle;

// Add min/max defaults
Sscope.low = -1;

0;

Sscope.middle =
Sscope.high = 1;

// Convert value to a percent between 0-100, keeping values in points
Sscope.toPercent = function (value) ({
var pct = 100 * (value - S$scope.low) / (Sscope.high - Sscope.low) ;
return Math.min (100, Math.max (0, pct)):;
bi

// Use the telemetryHandler to get telemetry objects here
handle = telemetryHandler.handle (Sscope.domainObject, function () {
Sscope.telemetryObjects = handle.getTelemetryObjects () ;
Sscope.barWidth =
100 / Math.max (($Sscope.telemetryObjects) .length, 1);
})

// Release subscriptions when scope is destroyed

Sscope.$on ('$destroy', handle.unsubscribe) ;

return BarGraphController;

});

tutorials/bargraph/src/controllers/BarGraphController. js

A summary of what we’ve done here:

e We're exposing some numeric values that will correspond to the 1ow, middle, and
high end of the graph. (The medium attribute will be useful for positioning the middle
line, which are graphs will ultimately descend down or push up from.)

e Add a utility function which converts from numeric values to percentages. This will help
support some positioning in the template.

e Utilize the telemetryHandler, provided by the platform, to start listening to real-time
telemetry updates. This will deal with most of the complexity of dealing with telemetry
(e.g. differentiating between individual telemetry points and telemetry panels, monitoring
latest values) and provide us with a useful interface for populating our view. The the
Open MCT Web Developer Guide for more information on dealing with telemetry.

Whenever the telemetry handler invokes its callbacks, we update the set of telemetry
objects in view, as well as the width for each bar.

We will also utilize this from our template:

<div class="example-bargraph">
<div class="example-tick-labels">

<div ng-repeat="value in [low, middle, high] track by $index"
class="example-tick-label"

style="bottom: {{ toPercent(value) }}%">
{{value}}
</div>
</div>

<div class="example-graph-area">
<div ng-repeat="telemetryObject in telemetryObjects"
style="left: {{barWidth * $index}}%; width: {{barWidth}}%"
class="example-bar-holder">
<div class="example-bar"
style="top: 25%; bottom: 50%;">
</div>
</div>
<div style="bottom: {{ toPercent (middle) }}%"
class="example-graph-tick">
</div>
</div>

<div class="example-bar-labels">
<div ng-repeat="telemetryObject in telemetryObjects"
style="1left: {{barWidth * $index}}%; width: {{barWidth}}&"
class="example-bar-holder example-label">
<mct-representation key="'label'"
mct-object="telemetryObject">
</mct-representation>
</div>
</div>
</div>

tutorials/bargraph/res/templates/bargraph.html

Summarizing these changes:

e Utilize the exposed 1ow, middle, and high values to populate our labels along the
vertical axis. Additionally, use the toPercent function to position these from the
bottom.

e Replace our three hard-coded bars with a repeater that looks at the
telemetryObjects exposed by the controller and adds one bar each.

e Position the dashed tick-line using the middle value and the toPercent function,
lining it up with its label to the left.

e At the bottom, repeat a set of labels for the telemetry-providing domain objects, with
matching alignment to the bars above. We use an existing representation, 1abel, to
make this easier.

Finally, we expose our controller from our bundle definition. Note that the depends
declaration includes both Sscope as well as the telemetryHandler service we made use of.

"name": "Bar Graph",
"description": "Provides the Bar Graph view of telemetry elements.",
"extensions": {
"views": [
{
"name": "Bar Graph",
"key": "example.bargraph",
"glyph": "H",
"templateUrl": "templates/bargraph.html",
"needs": ["telemetry" 1,
"delegation": true

1,
"stylesheets": [

{

"stylesheetUrl": "css/bargraph.css"

1 4
"controllers": [
{
"key": "BarGraphController",
"implementation": "controllers/BarGraphController.js",
"depends": ["$scope", "telemetryHandler"]

tutorials/bargraph/bundle. json

When we reload Open MCT Web, we are now able to see that our bar graph view
correctly labels one bar per telemetry-providing domain object, as shown for this Telemetry
Panel containing four Sine Wave Generators.

el Example Panel Bar Graph

Step 3. Using Telemetry Data
Now that our bar graph is labeled correctly, it's time to start putting data into the view.

First, let's add expose some more functionality from our controller. To make it simple,
we’ll expose the top and bottom for a bar graph for a given telemetry-providing domain object,
as percentages.

define (function () {
function BarGraphController ($scope, telemetryHandler) ({
var handle;

// Add min/max defaults
Sscope.low = -1;
Sscope.middle = 0;
Sscope.high = 1;
// Convert value to a percent between 0-100, keeping values in points
Sscope.toPercent = function (value) ({
var pct = 100 * (value - S$scope.low) / ($scope.high - $scope.low) ;
return Math.min (100, Math.max (0, pct)):;
}i

// Get bottom and top (as percentages) for current value
$scope.getBottom = function (telemetryObject) ({
var value = handle.getRangeValue (telemetryObject) ;
return $scope.toPercent (Math.min ($scope.middle, value)) ;

$scope.getTop = function (telemetryObject) ({
var value = handle.getRangeValue (telemetryObject) ;
return 100 - $scope.toPercent (Math.max ($scope.middle, value)) ;

}

// Use the telemetryHandler to get telemetry objects here
handle = telemetryHandler.handle (Sscope.domainObject, function () {
Sscope.telemetryObjects = handle.getTelemetryObjects () ;
Sscope.barWidth =
100 / Math.max (($Sscope.telemetryObjects) .length, 1);
})

// Release subscriptions when scope is destroyed
Sscope.$on ('$destroy', handle.unsubscribe) ;

return BarGraphController;

});

tutorials/bargraph/src/controllers/BarGraphController. js

The telemetryHandler exposes a method to provide us with our latest data value
(the getRangevalue method), and we already have a function to convert from a numeric
value to a percentage within the view, so we just use those. The only slight complication is that
we want our bar to move up or down from the middle value, so either of our top or bottom
position for the bar itself could be either the middle line, or the data value. We let Math.min
and Math.max decide this.

Next, we utilize this functionality from the template:

<div class="example-bargraph">
<div class="example-tick-labels">
<div ng-repeat="value in [low, middle, high] track by $index"
class="example-tick-label"
style="bottom: {{ toPercent (value) }}%">
{{value}}
</div>
</div>

<div class="example-graph-area'>
<div ng-repeat="telemetryObject in telemetryObjects"
style="left: {{barWidth * S$index}}%; width: {{barWidth}}%"
class="example-bar-holder">
<div class="example-bar"
ng-style="{
bottom: getBottom(telemetryObject) + 'S$'
top: getTop (telemetryObject) + 'S$'

’

}|V>
</div>

</div>
<div style="bottom: {{ toPercent (middle) }}%"
class="example-graph-tick">
</div>
</div>

<div class="example-bar-labels">
<div ng-repeat="telemetryObject in telemetryObjects"

style="left: {{barWidth * S$index}}%; width: {{barWidth}}%"
class="example-bar-holder example-label">

<mct-representation key=""'label'"

mct-object="telemetryObject">
</mct-representation>
</div>
</div>
</div>

tutorials/bargraph/res/templates/bargraph.html

Here, we utilize the functions we just provided from the controller to position the bar,
using an ng-style attribute.

When we reload Open MCT Web, our bar graph view now looks like:

+ Create cle anel Example Panel Bar Graph

Step 4. View Configuration

The default minimum and maximum values we’ve provided happen to make sense for
sine waves, but what about other values? We want to provide the user with a means of
configuring these boundaries.

This is normally done via Edit mode. Since view configuration is a common problem, the
Open MCT Web platform exposes a configuration object - called configuration - into our
view’s scope. We can populate it as we please, and when we return to our view later, those
changes will be persisted.

First, let’s add a tool bar for changing these three values in Edit mode:

"name": "Bar Graph",
"description": "Provides the Bar Graph view of telemetry elements.",
"extensions": {
"views": [
{
"name": "Bar Graph",
"key": "example.bargraph",
"glyph": "H",
"templateUrl": "templates/bargraph.html",
"needs": ["telemetry" 1],
"delegation": true,
"toolbar": {
"sections": [
{
"items": [
{
"name": "Low",
"property": "low",

"required": true,
"control": "textfield",
"size": 4

"name": "Middle",
"property": "middle",
"required": true,
"control": "textfield",
"size": 4

"name": "High",
"property": "high",
"required": true,
"control": "textfield",
"size": 4

"stylesheets": [

{
"stylesheetUrl": "css/bargraph.css"

1 4
"controllers": [
{
"key": "BarGraphController",
"implementation": "controllers/BarGraphController.js",
"depends": ["S$scope", "telemetryHandler"]

/bargraph/bundle. json

As we saw in to To-Do List plugin, a tool bar needs either a selected object or a view
proxy to work from. We will add this to our controller, and additionally will start reading/writing
those properties to the view’'s configuration object.

define (function () {
function BarGraphController ($Sscope, telemetryHandler) {
var handle;

// Expose configuration constants directly in scope
function exposeConfiguration() ({
$scope.low = $scope.configuration.low;
$scope.middle = $scope.configuration.middle;
$scope.high = $scope.configuration.high;

}

// Populate a default value in the configuration
function setDefault (key, value) {
if ($scope.configuration[key] === undefined) {
$scope.configuration[key] = value;
}
}

// Getter-setter for configuration properties (for view proxy)
function getterSetter (property) ({
return function (value) {
value = parseFloat(value) ;
if ('isNaN(value)) {
$scope.configuration[property] = value;
exposeConfiguration () ;

}

return $scope.configuration|[property];

|

// Add min/max defaults

setDefault('low', -1);

setDefault ('middle', 0);
setDefault('high', 1);

exposeConfiguration ($scope.configuration) ;

// Expose view configuration options
if ($scope.selection) ({
Sscope.selection.proxy ({
low: getterSetter('low'),
middle: getterSetter('middle'),
high: getterSetter('high')
});

// Convert value to a percent between 0-100
Sscope.toPercent = function (value) ({
var pct = 100 * (value - Sscope.low) /
(Sscope.high - S$scope.low) ;
return Math.min (100, Math.max (0, pct)):;
bi

// Get bottom and top (as percentages) for current value
Sscope.getBottom = function (telemetryObject) ({
var value = handle.getRangeValue (telemetryObject) ;
return $scope.toPercent (Math.min (Sscope.middle, value));
}
Sscope.getTop = function (telemetryObject) {
var value handle.getRangeValue (telemetryObject) ;
return 100 - S$scope.toPercent (Math.max (S$Sscope.middle, value)) ;

// Use the telemetryHandler to get telemetry objects here
handle = telemetryHandler.handle (Sscope.domainObject, function () {
Sscope.telemetryObjects = handle.getTelemetryObjects () ;
Sscope.barWidth =
100 / Math.max (($Sscope.telemetryObjects) .length, 1);
})

// Release subscriptions when scope is destroyed
Sscope.$on ('$destroy', handle.unsubscribe) ;

return BarGraphController;

1)
tutorials/bargraph/src/controllers/BarGraphController. js

A summary of these changes:

e First, read 1ow, middle, and high from the view configuration instead of
initializing them to explicit values. This is placed into its own function, since it will be
called a lot.

e The function setDefault is included; it will be used to set the default values for 1ow,
middle, and high in the view configuration, but only if they aren’t present.

e The tool bar will treat properties in a view proxy as getter-setters if they are functions;
that is, they will be called with an argument to be used as a setter, and with no argument
to use as a getter. We provide ourselves a function for making these getter-setters (since
we’ll need three) that additionally handles some checking to ensure that these are
actually numbers.

e After that, we actually initialize both the view configuration object with defaults (if
needed), and expose its state into the scope.

e Finally, we expose a view proxy which will handle changes to 1ow, middle, and high
as entered by the user from the tool bar. This uses the getter-setters we defined
previously.

If we reload Open MCT Web and go to a Bar Graph view in Edit mode, we now see that
we can change these bounds from the tool bar.

Bar Graph

Telemetry Adapter

The goal of this tutorial is to demonstrate how to integrate Open MCT Web with an
existing telemetry system.
A summary of the steps we will take:

e Expose the telemetry dictionary within the user interface.
e Support subscription/unsubscription to real-time streaming data.
e Support historical retrieval of telemetry data.

Step 0. Expose Your Telemetry

As a precondition to integrating telemetry data into Open MCT Web, this information
needs to be available over web-based interfaces. In practice, this will most likely mean exposing
data over HTTP, or over WebSockets.

For purposes of this tutorial, a simple node server is provided to stand in place of this
existing telemetry system. It generates real-time data and exposes it over a WebSocket
connection.

/*global require,process,console*/

var CONFIG = {
port: 8081,
dictionary: "dictionary.json",
interval: 1000

}i

(function () {
"use strict";

var WebSocketServer = require('ws') .Server,
fs = require('fs'),
wss = new WebSocketServer ({ port: CONFIG.port }),
dictionary = JSON.parse (fs.readFileSync (CONFIG.dictionary, "utf8")),
spacecraft = {
"prop.fuel": 77,
"prop.thrusters": "OFF",
"comms.recd": O,
"comms.sent": O,
"pwr.temp": 245,
"pwr.c": 8.15,
"pwr.v": 30
}I
histories {1},
listeners [1;

function updateSpacecraft () {
spacecraft["prop.fuel"] = Math

0,
spacecraft["prop.fuel"] -

(spacecraft["prop.thrusters"] === "ON" ? 0.5 0)

)
spacecraft["pwr.temp"] = spacecraft|["pwr.temp"] * 0.985
+ Math.random() * 0.25 + Math.sin (Date.now()) ;

spacecraft["pwr.c"] spacecraft["pwr.c"] * 0.985;

spacecraft["pwr.v"] = 30 + Math.pow (Math.random(), 3);

function generateTelemetry () {
var timestamp = Date.now(), sent = 0;
Object.keys (spacecraft) . forEach (function (id) {
var state = { timestamp: timestamp, value: spacecraft[id]
histories[id] = histories[id] || [];

histories[id] .push (state);
spacecraft["comms.sent"] += JSON.stringify(state) .length;

// Initialize

1) ;

listeners.forEach (function (listener) {
listener () ;

1) ;

function update () {
updateSpacecraft () ;
generateTelemetry () ;

function handleConnection (ws) ({
var subscriptions = {}, // Active subscriptions for this connection

handlers = { // Handlers for specific requests
dictionary: function () {
ws.send (JSON.stringify ({
type: "dictionary",
value: dictionary
1))
}V

subscribe: function (id) {
subscriptions[id] = true;
}V
unsubscribe: function (id) {
delete subscriptions[id];
}V
history: function (id) {
ws.send (JSON.stringify ({
type: "history",
id: id,
value: histories[id]

1)) :
b7

function notifySubscribers () {

Object.keys (subscriptions) .forEach (function (id) {
var history = histories[id];
if (history) {
ws.send (JSON.stringify ({
type: "data",
id: id,
value: historylhistory.length - 1]

// Listen for requests
ws.on ('message', function (message) {
var parts = message.split(' "),
handler = handlers[parts[0]];
if (handler) {
handler.apply (handlers, parts.slice(l)):;

1) ;

// Stop sending telemetry updates for this connection when closed
ws.on('close', function () {
listeners = listeners.filter (function (listener) {
return listener !== notifySubscribers;
}):
})

// Notify subscribers when telemetry is updated
listeners.push (notifySubscribers) ;

update () ;
setInterval (update, CONFIG.interval);

wss.on ('connection', handleConnection);

console.log ("Example spacecraft running on port ");
console.log ("Press Enter to toggle thruster state.");
process.stdin.on('data', function (data) {
spacecraft['prop.thrusters'] =
(spacecraft|['prop.thrusters'] === "OFF") ? "ON" : "OFF";
console.log ("Thrusters " + spacecraft["prop.thrusters"]);

)i
FO) s
tutorial-server/app.js

For purposes of this tutorial, how this server has been implemented is not important; it
has just enough functionality to resemble a WebSocket interface to a real telemetry system, and

niceties such as error-handling have been omitted. (For more information on using WebSockets,
both in the client and on the server,
https://developer.mozilla.org/en-US/docs/Web/API/\WebSockets_AP1I is an excellent starting
point.)

What does matter for this tutorial is the interfaces that are exposed. Once a WebSocket
connection has been established to this server, it accepts plain text messages in the following
formats, and issues JSON-formatted responses.

The requests it handles are:

e dictionary: Responds with a JSON response with the following fields:
o type: “dictionary”
o wvalue: ... the telemetry dictionary (see below) ...
e subscribe <id>: Subscribe to new telemetry data for the measurement with the
provided identifier. The server will begin sending messages of the following form:
o type:“data”
o id: The identifier for the measurement.
o wvalue: An object containing the actual measurement, in two fields:
m timestamp: A UNIX timestamp (in milliseconds) for the “measurement”
m value: The data value for the measurement (either a number, or a string)
unsubscribe <id>: Stop receiving new data for the identified measurement.
history <id>: Request a history of all telemetry data for the identified measurement.
o type: “history”
o 1id: The identifier for the measurement.
o wvalue: An array of objects containing the actual measurement, each of which
having two fields:
m timestamp: A UNIX timestamp (in milliseconds) for the “measurement”
m value: The data value for the measurement (either a number, or a string)

(Note that the term “measurement” is used to describe a distinct data series within this
system; in other systems, these have been called channels, mnemonics, telemetry points, or
other names. No preference is made here; Open MCT Web is easily adapted to use the
terminology appropriate to your system.)

Additionally, while running the server from the terminal we can toggle the state of the
“spacecraft” by hitting enter; this will turn the “thrusters” on and off, having observable changes
in telemetry.

The telemetry dictionary referenced previously is contained in a separate file, used by
the server. It uses a custom format and, for purposes of example, contains three “subsystems”
containing a mix of numeric and string-based telemetry.

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

"name": "Example Spacecraft",
"identifier": "sc",
"subsystems": [
{
"name": "Propulsion",
"identifier": "prop",
"measurements": [
{
"name": "Fuel",
"identifier": "prop.fuel",
"units": "kilograms",
"type": "float"

"name": "Thrusters",
"identifier": "prop.thrusters",
"units": "None",

"type": "string"

"name": "Communications",
"identifier": "comms",
"measurements": [
{

"name": "Received",

"identifier": "comms.recd",

"units": "bytes",

"type": "integer"

"name": "Sent",
"identifier": "comms.sent",
"units": "bytes",

"type": "integer"

"name": "Power",
"identifier": "pwr",
"measurements": [
{
"name": "Generator Temperature",
"identifier": "pwr.temp",
"units": "\u0080C",
"type": "float"

"name": "Generator Current",
"identifier": "pwr.c",

"unitsﬂ : HAH,
"type": "float"

"name": "Generator Voltage",
"identifier": "pwr.v",

"unitsﬂ : Hv",
"type": "float"

tutorial-server/dictionary.json

It should be noted that neither the interface for the example server nor the dictionary
format are expected by Open MCT Web; rather, these are intended to stand in for some existing
source of telemetry data to which we wish to adapt Open MCT Web.

We can run this example server by:
cd tutorial-server
npm install ws

node app.js

To verify that this is running and try out its interface, we can use a tool like
https://www.npmjs.com/package/wscat:

wscat -c ws://localhost:8081

> dictionary

< {"type":"dictionary","value":{"name":"Example
Spacecraft","identifier":"sc", "subsystems":[{"name":"Propulsion", "ide
ntifier":"prop", "measurements": [{"name":"Fuel","identifier":"prop. fue
1", "units":"kilograms","type":"float"}, {"name":"Thrusters","identifie
r":"prop.thrusters", "units":"None", "type":"string"}]}, {"name" : "Commun
ications","identifier":"comms", "measurements":[{"name":"Received", "id
entifier":"comms.recd","units":"bytes","type":"integer"}, {"name":"Sen
t","identifier":"comms.sent","units" :"bytes", "type":"integer"}1}, {"na
me" :"Power","identifier":"pwr", "measurements": [{"name" :"Generator
Temperature","identifier":"pwr.temp", "units":"C","type":"float"}, {"na
me" :"Generator

Current","identifier":"pwr.c","units":"A","type":"float"}, {"name":"Ge

https://www.npmjs.com/package/wscat

nerator
Voltage","identifier":"pwr.v","units":"V", "type":"float"}]1}1}}

Now that the example server’s interface is reasonably well-understood, a plugin can be
written to adapt Open MCT Web to utilize it.

Step 1. Add a Top-level Object

Since Open MCT Web uses an “object-first” approach to accessing data, before we’ll be
able to do anything with this new data source, we’ll need to have a way to explore the available
measurements in the tree. In this step, we will add a top-level object which will serve as a
container; in the next step, we will populate this with the contents of the telemetry dictionary
(which we will retrieve from the server.)

"name": "Example Telemetry Adapter",
"extensions": {
"types": [
{
"name": "Spacecraft",
"key": "example.spacecraft",
"glyph": "o"

[

"id": "example:sc",

"priority": "preferred",

"model": {
"type": "example.spacecraft",
"name": "My Spacecraft",
"composition": []

tutorials/telemetry/bundle. json

Here, we’ve created our initial telemetry plugin. This exposes a new domain object type
(the “Spacecraft’, which will be represented by the contents of the telemetry dictionary) and also
adds one instance of it as a root-level object (by declaring an extension of category roots.) We
have also set priority to preferred so that this shows up near the top, instead of below
My ltems.

If we include this in our set of active bundles:

"platform/framework", "platform/framework",
"platform/core", "platform/core",
"platform/representation", "platform/representation",
"platform/commonUI/about", "platform/commonUI/about",
"platform/commonUI/browse", "platform/commonUI/browse",
"platform/commonUI/edit", "platform/commonUI/edit",
"platform/commonUI/dialog", "platform/commonUI/dialog",
"platform/commonUI/general", "platform/commonUI/general",
"platform/containment", "platform/containment",
"platform/telemetry", "platform/telemetry",
"platform/features/layout", "platform/features/layout",
"platform/features/pages", "platform/features/pages",
"platform/features/plot", "platform/features/plot",
"platform/features/scrolling", "platform/features/scrolling",
"platform/forms", "platform/forms",
"platform/persistence/queue", "platform/persistence/queue",
"platform/policy", "platform/policy",

"example/persistence", "example/persistence",
"example/generator" "example/generator",

"tutorials/telemetry"

bundles. json

...we will be able to reload Open MCT Web and see that it is present:

Folder My ltems

Now, we have somewhere in the Ul to put the contents of our telemetry dictionary.

Step 2. Expose the Telemetry Dictionary

In order to expose the telemetry dictionary, we first need to read it from the server. Our
first step will be to add a service that will handle interactions with the server; this will not be used
by Open MCT Web directly, but will be used by subsequent components we add.

/*global define,WebSocket*/

define (
[1,
function () {
"use strict";

function ExampleTelemetryServerAdapter ($Sq, wsUrl) {
var ws = new WebSocket (wsUrl),
dictionary = $qg.defer();

// Handle an incoming message from the server
ws.onmessage = function (event) ({
var message = JSON.parse (event.data);

switch (message.type) {

case "dictionary":
dictionary.resolve (message.value) ;
break;

i 2

// Request dictionary once connection is established
ws.onopen = function () {
ws.send ("dictionary") ;

bi
return {
dictionary: function () {

return dictionary.promise;

i 2

return ExampleTelemetryServerAdapter;

tutorials/telemetry/src/ExampleTelemetryServerAdapter. js

When created, this service initiates a connection to the server, and begins loading the
dictionary. This will occur asynchronously, so the dictionary () method it exposes returns a
Promise for the loaded dictionary (dictionary.json from above), using Angular's sq (see

https://docs.angularjs.org/api/ng/service/$q.) Note that error- and close-handling for this
WebSocket connection have been omitted for brevity.

Once the dictionary has been loaded, we will want to represent its contents as domain
objects. Specifically, we want subsystems to appear as objects under My Spacecraft, and
measurements to appear as objects within those subsystems. This means that we need to
convert the data from the dictionary into domain object models, and expose these to Open MCT
Web via a modelService.

/*global define*/

define (
function () {
"use strict";

var PREFIX = "example tlm:",
FORMAT MAPPINGS = {
float: "number",
integer: "number",
string: "string"

b7

function ExampleTelemetryModelProvider (adapter, $q) {
var modelPromise, empty = S$qg.when ({});

// Check if this model is in our dictionary (by prefix)
function isRelevant (id) {
return id.indexOf (PREFIX) === 0;

// Build a domain object identifier by adding a prefix
function makeId (element) {
return PREFIX + element.identifier;

// Create domain object models from this dictionary
function buildTaxonomy (dictionary) {
var models = {};

// Create & store a domain object model for a measurement
function addMeasurement (measurement) {
var format = FORMAT MAPPINGS [measurement.type];
models [makelId (measurement)] = {
type: "example.measurement",
name: measurement.name,
telemetry: {
key: measurement.identifier,
ranges: [{
key: "value",

https://docs.angularjs.org/api/ng/service/$q

name: "Value",
units: measurement.units,
format: format

H

bs

// Create & store a domain object model for a subsystem
function addSubsystem (subsystem) {
var measurements =
(subsystem.measurements || []);
models [makeId (subsystem)] = {
type: "example.subsystem",
name: subsystem.name,
composition: measurements.map (makelId)
bi

measurements.forEach (addMeasurement) ;

(dictionary.subsystems || []).forEach (addSubsystem) ;

return models;

// Begin generating models once the dictionary is available
modelPromise = adapter.dictionary () .then (buildTaxonomy) ;

return {
getModels: function (ids) {
// Return models for the dictionary only when they
// are relevant to the request.
return ids.some (isRelevant) ? modelPromise : empty;

b7

return ExampleTelemetryModelProvider;

tutorials/telemetry/src/ExampleTelemetryModelProvider. js

This script implements a provider formodelService;the modelServiceisa
composite service, meaning that multiple such services can exist side by side. (For example,
there is another provider for modelService that reads domain object models from the
persistence store.)

Here, we read the dictionary using the server adapter from above; since this will be
loaded asynchronously, we use promise-chaining (see
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/th

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then#Chaining

en#Chaining) to take that result and build up an object mapping identifiers to new domain object
models. This is returned from our mode1Service, but only when the request actually calls for
identifiers that look like they’re from the dictionary. This means that loading other models is not
blocked by loading the dictionary. (Note that the mode1Service contract allows us to return
either a sub- or superset of the requested models, so it is fine to always return the whole
dictionary.)

Some notable points to call out here:

e Every subsystem and every measurement from the dictionary has an identifier field
declared. We use this as part of the domain object identifier, but we also prefix it with
example tlm:. This accomplishes a few things:

o We can easily tell whether an identifier is expected to be in the dictionary or not.

o We avoid naming collisions with other model providers.

o Finally, Open MCT Web uses the colon prefix as a hint that this domain object
will not be in the persistence store.

e A couple of new types are introduced here (in the type field of the domain object
models we create); we will need to define these as extensions as well in order for them
to display correctly.

e The composition field of each subsystem contained the Open MCT Web identifiers of
all the measurements in that subsystem. This composition field will be used by Open
MCT Web to determine what domain objects contain other domain objects (e.g. to
populate the tree.)

e The telemetry field of each measurement will be used by Open MCT Web to
understand how to request and interpret telemetry data for this object. The key is the
machine-readable identifier for this measurement within the telemetry system; the
ranges provide metadata about the values for this data. (A separate field, domains,
provides metadata about timestamps or other ordering properties of the data, but this will
be the same for all measurements, so we will define that later at the type level.)

o This field (whose contents will be merged atop the telemetry property we
define at the type-level) will serve as a template for later telemetry requests to the
telemetryService, so we'll see the properties we define here again later in
Steps 3 and 4.

This allows our telemetry dictionary to be expressed as domain object models (and, in
turn, as domain objects), but these objects still aren’t reachable. To fix this, we will need another
script which will add these subsystems to the root-level object we added in Step 1.

/*global define*/

define (
function () {

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then#Chaining

"use strict";

var TAXONOMY ID = "example:sc",
PREFIX = "example tlm:";

function ExampleTelemetryInitializer (adapter, objectService) {
// Generate a domain object identifier for a dictionary element
function makeId (element) {
return PREFIX + element.identifier;

// When the dictionary is available, add all subsystems
// to the composition of My Spacecraft
function initializeTaxonomy (dictionary) {
// Get the top-level container for dictionary objects
// from a group of domain objects.
function getTaxonomyObject (domainObjects) {
return domainObjects [TAXONOMY ID];

// Populate
function populateModel (taxonomyObject) {
return taxonomyObject.useCapability (
"mutation",
function (model) {
model.name =
dictionary.name;
model .composition =
dictionary.subsystems.map (makeId) ;

) ;

// Look up My Spacecraft, and populate it accordingly.
objectService.getObjects ([TAXONOMY ID])

.then (getTaxonomyObject)

.then (populateModel) ;

adapter.dictionary() .then(initializeTaxonomy) ;

return ExampleTelemetryInitializer;

tutorials/telemetry/src/ExampleTelemetryInitializer.]js

At the conclusion of Step 1, the top-level My Spacecraft object was empty. This script
will wait for the dictionary to be loaded, then load My Spacecraft (by its identifier), and “mutate”
it. The mutation capability allows changes to be made to a domain object’'s model. Here, we

take this top-level object, update its name to match what was in the dictionary, and set its
composition to an array of domain object identifiers for all subsystems contained in the
dictionary (using the same identifier prefix as before.)

Finally, we wire in these changes by modifying our plugin’s bundle.json to provide
metadata about how these pieces interact (both with each other, and with the platform):

"name": "Example Telemetry Adapter",
"extensions": {
"types": [
{
"name": "Spacecraft",
"key": "example.spacecraft",
"glyph": "o"
} 14
{
"name": "Subsystem",
"key": "example.subsystem",
"glyph": "o"
"model": { "composition": [] 1}

"name": "Measurement",
"key": "example.measurement",
"glyph": "T",
"model": { "telemetry": {} },
"telemetry": {
"source": "example.source",
"domains": [
{
"name": "Time",
"key": "timestamp"

1 4
"roots": [
{
"id": "example:sc",
"priority": "preferred",
"model": {
"type": "example.spacecraft",
"name": "My Spacecraft",
"composition": []

1,

"services": [

"key": "example.adapter",
"implementation": "ExampleTelemetryServerAdapter.js",
"depends": ["$qgq", "EXAMPLE WS _URL"]

1,

"constants": [
{
"key": "EXAMPLE WS URL",
"priority": "fallback",
"value": "ws://localhost:8081"

[

"implementation": "ExampleTelemetryInitializer.js"
"depends": ["example.adapter", "objectService"]

] 4
"components": [
{
"provides": "modelService",
"type": "provider",
"implementation": "ExampleTelemetryModelProvider.]js",
"depends": ["example.adapter", "$q"]

tutorials/telemetry/bundle. json

A summary of what we’ve added here:

e New type definitions have been added to represent Subsystems and Measurements,
respectively.

o Measurements have a telemetry field; this is similar to the telemetry field
added in the model, but contains properties that will be common among all
Measurements. In particular, the source field will be used later as a symbolic
identifier for the telemetry data source.

o We have also added some “initial models” for these two types using the model
field. While domain objects of these types cannot be created via the Create
menu, some policies will look at initial models to predict what capabilities domain
objects of certain types would have, so we want to ensure that Subsystems and
Measurements will be recognized as having composition and telemetry
capabilities, respectively.

e The adapter to the WebSocket server has been added as a service with the symbolic
name example.adapter; it is depended-upon elsewhere within this plugin.

A constant, EXAMPLE WS URL, is defined, and depended-upon by example.server.
Setting priority to fallback means this constant will be overridden if defined
anywhere else, allowing configuration bundles to specify different URLs for the
WebSocket connection.
The initializer script is registered using the runs category of extension, to ensure that
this executes (and populates the contents of the top-level My Spacecraft object) once
Open MCT Web is started.
o This depends upon the example.adapter service we exposed above, as well
as Angular’s $g; these services will be made available in the constructor call.
Finally, the modelService provider which presents dictionary elements as domain
object models is exposed. Since modelService is a composite service, this is
registered under the extension category components.
o As with the initializer, this depends upon the example.adapter service we
exposed above, as well as Angular’s $qg; these services will be made available in
the constructor call.

Now if we run Open MCT Web (assuming our example telemetry server is also running)

and expand our top-level node completely, we see the contents of our dictionary:

Note that “My Spacecraft” has changed its name to “Example Spacecraft’, which is the

name it had in the dictionary.

Step 3. Historical Telemetry

After Step 2, we are able to see our dictionary in the user interface and click around our
different measurements, but we don’t see any data. We need to give ourselves the ability to
retrieve this data from the server. In this step, we will do so for the server’s historical telemetry.

Ouir first step will be to add a method to our server adapter which allows us to send
history requests to the server:

/*global define,WebSocket*/

define (
[1,
function () {
"use strict";

function ExampleTelemetryServerAdapter ($Sq, wsUrl) {
var ws = new WebSocket (wsUrl),
histories = {},
dictionary = S$qg.defer();

// Handle an incoming message from the server
ws.onmessage = function (event) ({
var message = JSON.parse (event.data);

switch (message.type) {

case "dictionary":
dictionary.resolve (message.value) ;
break;

case "history":
histories[message.id] .resolve (message) ;
delete histories|[message.id];
break;

Request dictionary once connection is established
ws.onopen = function () {

ws.send ("dictionary") ;
bi

return {

dictionary: function () {
return dictionary.promise;

}I

history: function (id) {
histories[id] = histories[id] || $qg.defer();
ws.send ("history " + id);
return histories[id] .promise;

return ExampleTelemetryServerAdapter;

tutorials/telemetry/src/ExampleTelemetryServerAdapter. js

When the history method is called, a new request is issued to the server for historical
telemetry, unless a request for the same historical telemetry is still pending. Similarly, when
historical telemetry arrives for a given identifier, the pending promise is resolved.

This history method will be used by a telemetryService provider which we will
implement:

/*global define*/

define (
['./ExampleTelemetrySeries'],
function (ExampleTelemetrySeries) {
"use strict";

var SOURCE = "example.source";

function ExampleTelemetryProvider (adapter, $q) {
// Used to filter out requests for telemetry
// from some other source
function matchesSource (request) {
return (request.source === SOURCE) ;

return {
requestTelemetry: function (requests) {
var packaged = {},
relevantRegs = requests.filter (matchesSource) ;

// Package historical telemetry that has been received
function addToPackage (history) {
packaged[SOURCE] [history.id] =
new ExampleTelemetrySeries (history.value);

// Retrieve telemetry for a specific measurement
function handleRequest (request) {

var key = request.key;

return adapter.history(key) .then (addToPackage) ;

packaged [SOURCE] = {};
return $g.all (relevantReqgs.map (handleRequest))
.then (function () { return packaged; });

}V

subscribe: function (callback, requests) ({
return function () {};

}

}i
}

return ExampleTelemetryProvider;

tutorials/telemetry/src/ExampleTelemetryProvider. js

The requestTelemetry method of a telemetryService is expected to take an
array of requests (each with source and key parameters, identifying the general source of
data and the specific element within that source, respectively) and return a Promise for any
telemetry data it knows of which satisfies those requests, packaged in a specific way. This
packaging is as an object containing key-value pairs, where keys correspond to source
properties of requests and values are key-value pairs, where keys correspond to key properties
of requests and values are TelemetrySeries objects. (We will see our implementation
below.)

To do this, we create a container for our telemetry source, and consult the adapter to get
telemetry histories for any relevant requests, then package them as they come in. The $g.all
method is used to return a single Promise that will resolve only when all histories have been
packaged. Promise-chaining is used to ensure that the resolved value will be the fully-packaged
data.

It is worth mentioning here that the requests we receive should look a little familiar.
When Open MCT Web generates a request object associated with a domain object, it does so
by merging together three JavaScript objects:

First, the telemetry property from that domain object’s type definition.

Second, the telemetry property from that domain object’s model.

Finally, the request object that was passed in via that domain object’s telemetry
capability.

As such, the source and key properties we observe here will come from the type
definition and domain object model, respectively, as we specified them during Step 2. (Or, they

might come from somewhere else entirely, if we have other telemetry-providing domain objects
in our system; that is something we check for using the source property.)

Finally, note that we also have a subscribe method, to satisfy the interface of
telemetryService, but this subscribe method currently does nothing.
This script uses an ExampleTelemetrySeries class, which looks like:

/*global define*/

define (
function () {
"use strict";

function ExampleTelemetrySeries (data) {
return {
getPointCount: function () {
return data.length;
}V
getDomainValue: function (index) {
return (datal[index] || {}).timestamp;
}V
getRangeValue: function (index) {
return (datal[index] || {}) .value;

b7

return ExampleTelemetrySeries;

tutorials/telemetry/src/ExampleTelemetrySeries. js

This takes the array of telemetry values (as returned by the server) and wraps it with the
interface expected by the platform (the methods shown.)

Finally, we expose this telemetryService provider declaratively:

"name": "Example Telemetry Adapter",
"extensions": {
"types": [
{

"name": "Spacecraft",
"key": "example.spacecraft",
"quph" : "O"

"name": "Subsystem",

"key": "example.subsystem",
"glyph" : "O"

"model": { "composition": [] }

"name": "Measurement",
"key": "example.measurement",
"glyph": "T",
"model": { "telemetry": {} 1},
"telemetry": {
"source": "example.source",
"domains": [
{
"name": "Time",
"key": "timestamp"

1 4
"roots":
{
"id": "example:sc",
"priority": "preferred",
"model": {
"type": "example.spacecraft",
"name": "My Spacecraft",
"composition": []

1 4
"services": [
{
"key": "example.adapter",
"implementation": "ExampleTelemetryServerAdapter.js",
"depends": ["$qg", "EXAMPLE WS URL"]

1,

"constants": [

{

"key": "EXAMPLE WS URL",
"priority": "fallback",
"value": "ws://localhost:8081"

"implementation": "ExampleTelemetryInitializer.js"
"depends": ["example.adapter", "objectService"]

1,

"components": [

{

"provides": "modelService",

"type": "provider",

"implementation": "ExampleTelemetryModelProvider.js",
"depends": ["example.adapter", "S$g"]

"provides": "telemetryService",

"type": "provider",

"implementation": "ExampleTelemetryProvider.js",
"depends": ["example.adapter", "$q"]

tutorials/telemetry/bundle. json

Now, if we navigate to one of our numeric measurements, we should see a plot of its
historical telemetry:

surement Generator Temperature

B Generator Temperatura

2015-210 00:01:10, 8.917

We can now visualize our data, but it doesn’t update over time - we know the server is
continually producing new data, but we have to click away and come back to see it. We can fix
this by adding support for telemetry subscriptions.

Step 4. Real-time Telemetry

Finally, we want to utilize the server’s ability to subscribe to telemetry from Open MCT
Web. To do this, first we want to expose some new methods for this from our server adapter:

/*global define,WebSocket*/

define (
[1,
function () {
"use strict";

function ExampleTelemetryServerAdapter ($Sqg, wsUrl) {
var ws = new WebSocket (wsUrl),
histories = {},
listeners = [],
dictionary = S$qg.defer();

// Handle an incoming message from the server
ws.onmessage = function (event) ({
var message = JSON.parse (event.data);

switch (message.type) {

case "dictionary":
dictionary.resolve (message.value) ;
break;

case "history":
histories[message.id] .resolve (message) ;
delete histories[message.id];
break;

case "data":
listeners. forEach (function (listener) {

listener (message) ;

})

break;

Request dictionary once connection is established
ws.onopen = function () {

ws.send ("dictionary") ;
bi

return {
dictionary: function () {
return dictionary.promise;
}I
history: function (id) {
histories[id] = histories[id] || S$Sg.defer();

ws.send ("history " + id);
return histories[id].promise;
}V
subscribe: function (id) {
ws.send ("subscribe " + id);

},
unsubscribe: function (id) {
ws.send ("unsubscribe " + id) ;

},
listen: function (callback) {
listeners.push (callback) ;

b7

return ExampleTelemetryServerAdapter;

tutorials/telemetry/src/ExampleTelemetryServerAdapter. js

Here, we have added subscribe and unsubscribe methods which issue the
corresponding requests to the server. Seperately, we introduce the ability to listen for data
messages as they come in: These will contain the data associated with these subscriptions.

We then need only to utilize these methods from our telemetryService:

/*global define*/

define (
['./ExampleTelemetrySeries'],
function (ExampleTelemetrySeries) {
"use strict";

var SOURCE = "example.source";

function ExampleTelemetryProvider (adapter, $qg) {
var subscribers = {};

// Used to filter out requests for telemetry
// from some other source
function matchesSource (request) {

return (request.source === SOURCE) ;

// Listen for data, notify subscribers
adapter.listen (function (message) ({
var packaged = {};
packaged[SOURCE] = {};
packaged [SOURCE] [message.id] =

new ExampleTelemetrySeries ([message.value]) ;
(subscribers[message.id] || []) .forEach (function (cb) ({
cb (packaged) ;
}) s
}) s

return {
requestTelemetry: function (requests) {
var packaged = {},
relevantRegs = requests.filter (matchesSource) ;

// Package historical telemetry that has been received
function addToPackage (history) {
packaged[SOURCE] [history.id] =
new ExampleTelemetrySeries (history.value);

// Retrieve telemetry for a specific measurement
function handleRequest (request) {

var key = request.key;

return adapter.history(key) .then (addToPackage) ;

packaged [SOURCE] = {};
return $g.all (relevantReqgs.map (handleRequest))
.then (function () { return packaged; });
}V
subscribe: function (callback, requests) ({
var keys = requests.filter (matchesSource)
.map (function (req) { return req.key; });

function notCallback (cb) {
return cb !'== callback;

function unsubscribe (key) {
subscribers[key] =
(subscribers[key] || []).filter (notCallback) ;
if (subscribers[key].length < 1) {
adapter.unsubscribe (key) ;

keys. forEach (function (key) ({
subscribers[key] = subscribers[key] || []:
adapter. subscribe (key) ;
subscribers [key] . push (callback) ;

})

return function () {
keys. forEach (unsubscribe) ;

b e

b7
}

return ExampleTelemetryProvider;

tutorials/telemetry/src/ExampleTelemetryProvider. js

A quick summary of these changes:

e First, we maintain current subscribers (callbacks) in an object containing key-value pairs,
where keys are request key properties, and values are callback arrays.

e We listen to new data coming in from the server adapter, and invoke any relevant
callbacks when this happens. We package the data in the same manner that historical
telemetry is packaged (even though in this case we are providing single-element series
objects.)

e Finally, in our subscribe method we add callbacks to the lists of active subscribers.
This method is expected to return a function which terminates the subscription when
called, so we do some work to remove subscribers in this situations. When our
subscriber count for a given measurement drops to zero, we issue an unsubscribe
request. (We don’t take any care to avoid issuing multiple subscribe requests to the
server, because we happen to know that the server can handle this.)

Running Open MCT Web again, we can still plot our historical telemetry - but now we
also see that it updates in real-time as more data comes in from the server.

