Aerospace Testing Seminar

“Test — Making the Product Better”

Renaissance Los Angeles Airport Hotel
Oct. 27–29, 2015

Abstracts due April 10, 2015
Submit abstracts to:
atstechnicalworkshop@aero.org

For additional information, contact:
Tech Chairs: Mr. John Welch, john.w.welch@aero.org
Mr. Aron Hozman, aron.d.hozman@nasa.gov,
Administrator: Ms. Lisa Drexinger, lisa.m.drexinger@aero.org
SLS Scale Model Acoustic Liftoff Acoustic Environment Test Results and Comparisons

The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments.

The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

Co-authors: D. Counter and C. Giacomoni