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ABSTRACT 

Hyperspectral imaging for remote sensing has prompted development of hyperspectral image projectors that can be used 

to characterize hyperspectral imaging cameras and techniques in the lab.  One such emerging astronomical hyperspectral 

imaging technique is wide-field double-Fourier interferometry.  NASA’s current, state-of-the-art, Wide-field Imaging 

Interferometry Testbed (WIIT) uses a Calibrated Hyperspectral Image Projector (CHIP) to generate test scenes and 

provide a more complete understanding of wide-field double-Fourier interferometry.  Given enough time, the CHIP is 

capable of projecting scenes with astronomically realistic spatial and spectral complexity. However, this would require a 

very lengthy data collection process.  For accurate but time-efficient projection of complicated hyperspectral images 

with the CHIP, the field must be decomposed both spectrally and spatially in a way that provides a favorable trade-off 

between accurately projecting the hyperspectral image and the time required for data collection.  We apply nonnegative 

matrix factorization (NMF) to decompose hyperspectral astronomical datacubes into eigenspectra and eigenimages that 

allow time-efficient projection with the CHIP.  Included is a brief analysis of NMF parameters that affect accuracy, 

including the number of eigenspectra and eigenimages used to approximate the hyperspectral image to be projected.  For 

the chosen field, the normalized mean squared synthesis error is under 0.01 with just 8 eigenspectra.  NMF of 

hyperspectral astronomical fields better utilizes the CHIP’s capabilities, providing time-efficient and accurate 

representations of astronomical scenes to be imaged with the WIIT. 

Keywords: nonnegative matrix factorization, wide-field imaging interferometry testbed, hyperspectral image projector, 

spatio-spectral, double-Fourier, NMF, WIIT, CHIP 

 

1. INTRODUCTION 

Hyperspectral imaging is an important modality for the identification and classification of objects and materials within a 

scene. In particular, the astrophysics community relies on hyperspectral measurements to make inferences about, and 

develop models of, distant astronomical objects. Although ground-based interferometric measurements are in 

widespread use among astrophysicists, single-aperture telescopes remain the main source of space-based hyperspectral 

measurements. There will come a time, however, when a monolithic aperture will be unable to meet the demands for 

high spatial resolution astronomical imagery due to excessive cost, weight, and size, especially at infrared wavelengths. 

This is when space-based observatories will likely employ wide-field spatio-spectral, or double-Fourier, interferometry. 

The mathematical framework for and fairly detailed descriptions of a spatio-spectral interferometer have already been 

published1-5, so the following will be only a brief introduction into double-Fourier interferometric imaging. 

Spatio-spectral interferometry is an extension of Fourier transform imaging spectroscopy6 (FTIS) using aperture 

synthesis to obtain higher spatial resolution than with conventional FTIS. In FTIS, an input beam is split into two arms 

of an interferometer before being recombined and focused onto an array detector with an imaging lens. One arm of the 

interferometer has a fixed optical path, while the other has a scanning mirror that can vary the optical path difference 

(OPD) between the two arms of the interferometer, resulting in a measured datacube consisting of two spatial 

dimensions and one delay dimension. A hyperspectral image cube is then obtained by taking the Fourier transform over 

the delay dimension of the datacube. Spatio-spectral interferometric imaging, however, requires two apertures with a 

vector separation, called the baseline, instead of a single aperture followed by a beam splitter. The optical path following 

one of the mirrors is kept fixed while the other can vary, resulting in a measured datacube for each baseline separation. 

Taking the Fourier transform of these datacubes over the delay dimension results in a set of high-pass filtered images, 

where the passband in the spatial frequency domain is related to both the baseline and wavelength7. A single high-



 

 
 

 

spatial-resolution hyperspectral image can be recovered from the set of high-pass filtered images using an image 

synthesis algorithm, such as the algorithm developed by Lyon et al.4,5. 

Although the theoretical groundwork for double-Fourier interferometry has already been established1-5, the space-based 

spatio-spectral interferometric imaging technique needs further characterization before an interferometric observatory, 

such as the NASA proposed Space Infrared Interferometric Telescope (SPIRIT)8, ever becomes a reality. This prompted 

NASA to build the Wide-field Imaging Interferometry Testbed (WIIT)9-20. The WIIT was developed by NASA to further 

the maturation of wide-field spatio-spectral interferometry in order to meet the demands of future astronomical 

hyperspectral imaging missions. The testbed is a scale model of a space-based wide-field spatio-spectral interferometer, 

but operating at visible wavelengths, for which measurements are limited primarily by detector photon noise. The light 

source for the interferometer, which has been integrated into the WIIT, is a Calibrated Hyperspectral Image Projector 

(CHIP)20. 

Hyperspectral image projectors (HIPs) were developed by the Optical Technologies Division at the National Institute of 

Standards and Technology to solve the problem of testing and characterizing hyperspectral imaging techniques with 

known hyperspectral scenes21-23. These projectors allow for a scene to be displayed such that every object in the scene 

has the same arbitrary spectrum, resulting in a spatially-spectrally separable image at any given time. This is achieved 

using two digital light processing (DLP) units. One of the DLP units determines the gray-scale spatial distribution of the 

image being projected. The other unit controls the shape of the arbitrary spectrum, which is achieved by spectrally 

dispersing a broadband source onto the DLP such that each row of the DLP chip controls the relative strength of each 

wavelength bin of the output spectrum. The number of wavelength bins and the spectral range together determine the 

spectral resolution of the HIP’s spectral output. A hyperspectral image can then be simulated with a HIP by cycling 

through multiple spatially-spectrally separable images that can be added together throughout the integration time of the 

camera to simulate the measurement of a spatially-spectrally complicated hyperspectral image. A calibrated HIP, such as 

NASA’s CHIP, is constructed by including a fiber-coupled spectrometer into the design such that the spectral output of 

the projector can be monitored20. Combined, the WIIT and the CHIP provide a controlled means of probing the 

intricacies of spatio-spectral interferometry in a shot-noise-limited regime. 

In this paper, we describe how the CHIP will be used to obtain interferometric measurements of realistic astronomical 

test scenes from the WIIT in a time-efficient manner. In Section 2 we will motivate how the CHIP can expedite the 

measurement of spatially-spectrally complex images in combination with the data decomposition technique known as 

nonnegative matrix factorization (NMF). A brief introduction to NMF and how it applies to hyperspectral image 

decomposition is included in Section 3. The result of decomposing an astronomically realistic test scene as a function of 

the number of images through which the CHIP must cycle to represent the scene is presented in Section 4, followed by 

concluding remarks in Section 5. 

2. Time-efficient WIIT data collection using CHIP 

The WIIT is invaluable for demonstrating the effectiveness of double-Fourier interferometric imaging, but the data 

collection process for test scenes of moderate spatial and spectral complexity can be quite lengthy. To start, there are 

aspects to the data collection process that are intrinsic to the technique that cannot be altered. For example, the sample 

spacing of the OPD dimension limits the range of spectral frequencies in the reconstructed hyperspectral image, and the 

range of the delay line limits spectral resolution of the recovered image. This means the number of delay line positions 

for a single baseline is predetermined. In the same regard, the number of baseline measurements required to fully 

measure the spatial frequency domain, or u-v space, is dependent on both the maximum baseline length and the size of 

the individual apertures of the interferometer. One could use sparse sampling to reduce total measurement time, but we 

are assuming a general object that may not be conducive to sparse sampling. On the other hand, an aspect of the system 

over which we do have control is the integration time of the camera for each delay line position. Because datacubes are 

collected for many baselines, and many delay line positions are required for each datacube, decreasing the integration 

time for each delay line position will result in a large reduction in total data collection time for the WIIT. When 

experimentally simulating the measurement of hyperspectral images, however, the integration time is intimately related 

to implementing hyperspectral scene generation with the CHIP.  

Recall that the CHIP generates a hyperspectral image by cycling through multiple spatially-spectrally separable images 

that can be added together throughout the integration time of the camera to simulate the measurement of a spatially-

spectrally complicated hyperspectral image. Imagine a simple scene with two astronomical objects having different 

spectra on a blank background. For this simple scene, the CHIP would have to display the image of one object with its 



 

 
 

 

spectrum, followed by the image of the second object with its different spectrum. As the number of objects with different 

spectra gets larger, the number of images through which the CHIP has to cycle grows proportionally until the number of 

spectrally diverse objects is the same as the number of spectral bins of the CHIP. At that point, one could just cycle 

through all of the CHIP’s spectral bins independently. There is another option, however, that provides a trade-off 

between the number of images through which the CHIP cycles and how accurately the projected image matches the 

original hyperspectral test scene, in a manner similar to principal component analysis (PCA). Unfortunately, PCA on an 

arbitrary hyperspectral image will result in eigenspectra and eigenimages, sometimes referred to as abundance maps, 

with negative values, which we cannot represent using the CHIP. Nonnegative matrix factorization (NMF) is similar to 

PCA except all values in the eigenspectra and eigenimages are restricted to be nonnegative, so it can be used to 

decompose hyperspectral test scenes for the CHIP. The idea for time-efficient projection using the CHIP is to 

decompose the test scene into as few eigenimages and eigenspectra as possible while maintaining a specified accuracy 

between the projected image and the original test scene. 

3. Hyperspectral Image Decomposition using NMF 

NMF is the process in linear algebra of approximating an arbitrary nonnegative n m matrix A by decomposing it into 

the product of two smaller nonnegative matrices W and ,H with sizes n p and ,p m  respectively, expressed as  

 .A WH   (1) 

The goal is to keep the size of p as small as possible while maintaining an accurate representation of the original matrix 

A, which is analogous to PCA with the exception that all three matrices are restricted to have nonnegative values. Most 

algorithms for NMF, including both the multiplicative update algorithm24,25 and the alternating least squares 

algorithm25,26, are based on iteratively reducing some cost function, usually the square of the Frobenius norm of the 

residual matrix: 
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The results shown later in this paper employ the alternating nonnegative least squares algorithm using projected gradient 

methods26 to minimize this cost function because of its speed and consistency. Due to the imperfect data compression 

associated with approximating the matrix A with fewer than nm elements, all NMF optimization routines suffer from 

many local minima. This means that the starting values of W and H are important for finding a good solution. Instead of 

trying many random starting points and choosing the best result, we have found that applying nonnegative double 

singular value decomposition27 to A provides an initial estimate that consistently outperforms the random guess method. 

The stopping criteria are related to the norm of the projected gradient as well as a maximum number of iterations. Figure 

1 is an attempt to visualize how Eq. (1) applies to a hyperspectral image. The left side of Fig. 1 shows the original 

hyperspectral image and the right side shows how it can be approximated by summing over a sequence of spatially-

spectrally separable images, represented as eigenspectra (top) and eigenimages (bottom). We can now discuss how to 

apply NMF to a hyperspectral image to obtain the plots and images on the right side of Fig. 1. 

Adapting NMF for decomposition of a hyperspectral image into eigenspectra and eigenimages relies on array 

manipulations, which are simple tasks for computing languages such as Numpy/Python and Matlab. A hyperspectral 

image is often thought of as a three-dimensional array where two dimensions correspond to spatial coordinates and the 

other to the spectrum, but we can reshape the three dimensional array into a two-dimensional array such that the two 

spatial coordinates are collapsed down to a single dimension. This means that a hyperspectral image of size  j k l  is 

reshaped to size ,j kl where j indexes the spectral dimension and k and l are pixel indices. The result is an array that 

describes the spectrum for each image pixel and can now be assigned to the matrix A in Eqs. (1) and (2) such that m k  

and .n kl After applying NMF to the hyperspectral matrix A, the p columns of W will be the computed eigenspectra 

and the p rows of H will contain the corresponding eigenimages. In order to visualize the eigenimages, we must reshape 

the matrix H from size p kl  to . p k l  The eigenspectra now correspond to the spectral weightings applied to one of 

the CHIP’s DLPs, while the eigenimages become the 8-bit gray scale images applied synchronously to the other DLP. 

Because spatially-spectrally complicated hyperspectral images can be decomposed into a handful of eigenspectra and 

eigenimages suitable as inputs for the CHIP, NMF is a natural solution to the problem of decomposing complicated 

hyperspectral images so that time-efficient data collection can be performed with the WIIT.  



 

 
 

 

 

 

Figure 1. An illustration of Eq. (1) showing how a hyperspectral image (left) can be approximated by the sum of various 

spatially-spectrally separable images (right), with the eigenspectra on top and the associated eigenimages on the 

bottom.  

4. Results for an astronomically realistic test scene 

The hyperspectral test scene used for our simulations was one of a handful created by NASA to demonstrate the viability 

of a space-based double-Fourier interferometer for future far-infrared (FIR) missions, such as SPIRIT8, because high 

resolution images of the FIR sky do not yet exist. The chosen test scene, a panchromatic image of which is shown in Fig. 

2, is a deep field image comprised of many spectrally varying sources and possesses the most spatial-spectral complexity 

of any of the test scenes generated by NASA. This is optimal for demonstrating NMF decomposition because it will 

require the most eigenspectra (the largest value of p) to accurately represent the complexity of the test scene. The 

dimensions of the test scene are 376 375 375j k l     . 

 

Figure 2. Spectral average of the simulated far-IR hyperspectral image to be decomposed (stretched to 0.25 power to show 

more faint spatial detail). 

In order to perform time-efficient data collection as discussed in Section 2, we want to decompose the deep field image 

into as few eigenspectra as possible while maintaining adequate spatial/spectral complexity. We compare the results of 

the NMF estimated image with the input image using the normalized mean squared error (NMSE), which is a normalized 

version the cost function used by the NMF algorithm: 
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We performed NMF as described in Section 3 for integer values of p ranging from 4 to 15, and more sparsely sampled 

for values of p out to 100. Figure 3 is a plot of the NMSE as a function of p, showing that as few as 8 eigenspectra 

represents the original test scene with an NMSE < 0.01, about 27 eigenspectra represents the scene with an NMSE < 

0.001, and about 58 eigenspectra produce an NMSE < 0.0001. The spectral average of the estimated hyperspectral image 

for p = 8 is shown in Fig. 4; it is visually similar to Fig. 3. 

 

Figure 3. Plot of normalized mean squared error versus the number, p, of eigenspectra fitted by the NMF algorithm. 

 

Figure 4. Spectral average of the decomposed far-IR hyperspectral image produced by NMF algorithm for p = 8 (stretched 

to 0.25 power). 

As expected, the NMSE between the original and decomposed image monotonically decreases as the number p of 

recovered eigenspectra increases. We can expect that the NMSE will continue to decrease, approaching zero as either the 

value of p reaches the number of spectral bins in the test image, 376 in this case, or as the value of p reaches the total 

number sources with unique spectra. Figure 5 shows the reconstructed eigenspectra and eigenimages corresponding to 



 

 
 

 

the approximated panchromatic image in Fig. 4. The first eigenspectrum and eigenimage recovered by the NMF 

algorithm in Fig. 5 are nearly identical for all values of p because together they describe the background radiation 

contributing energy to every pixel in the scene. The shape of the remaining eigenspectra and eigenimages are dependent 

on the value of p. 

 

Figure 5. Eigenspectra and eigenimages (stretched to 0.3 power) produced by the NMF algorithm for p = 8. 

Figure 6 shows the spectral average of the residual images, ,A WH  for various values of p between 6 and 50 along with 

their associated NMSE values. Bright and dark features in the residuals correspond to spectral sources that are under-

estimated and over-estimated, respectively. Notice that as the value of p increases, the NMF algorithm tends to improve 

the brightest and darkest spatial features, which contribute the most energy to the residual images. This is what we 

should expect because the algorithm is minimizing the Frobenius norm of the residual images, as discussed in Section 3. 

The remaining spatial features in the residual images likely have sharp spectral signatures not shared by the majority of 

astronomical sources within the scene. 



 

 
 

 

 
Figure 6. Spectral average of the residual hyperspectral image as the number of estimated eigenspectra varies from p = 6, 8, 

14, 20, 30, 50. Note the difference in colorbar values. 

5. Conclusion and Future Work 

NMF has been applied to an astronomically realistic test scene that will be used by NASA’s CHIP and WIIT for further 

characterization of double-Fourier interferometric imaging. We demonstrated that the NMSE between the original and 

decomposed hyperspectral image decreases monotonically as a function of the value of p, dropping below 0.01, 0.001, 

and 0.0001 for as few as 8, 27, and 58 eigenspectra and eigenimages, respectively. 

Before the eigenspectra and eigenimages can be supplied to the CHIP, however, they both must be converted to 8-bit 

values limited by the DLP, reducing how accurately the CHIP can represent the original test scene. As a result, it would 

be better to include this information into the optimization algorithm in order to reduce quantization error. The quality of 

the approximated image might also be improved by choosing new starting guesses for the NMF algorithm from the 

eigenspectra and eigenimages found for larger values of p. However, the most important aspect of future work is the 

measurement of the decomposed hyperspectral image experimentally with the WIIT. 
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