INTRODUCTION

The Visual Impairment Intracranial Pressure (VIIP) syndrome is currently NASA’s number one human spaceflight risk. The syndrome, which is related to microgravity exposure, manifests with changes in visual acuity (hyperopic shifts, scotomas), changes in eye structure (optic disc edema, choroidal folds, cotton wool spots), globe flattening, and distended optic nerve sheaths. In some cases, elevated cerebrospinal fluid pressure has been documented postflight reflecting increased intracranial pressure (ICP). While the eye appears to be the main affected end organ of this syndrome, the ocular affects are thought to be related to the effect of cephalic fluid shift on the vascular system and the central nervous system. The leading hypotheses for the development of VIIP involve microgravity induced headward fluid shifts along with a loss of gravity-assisted drainage of venous blood from the brain, both leading to cephalic congestion and increased ICP. Although not all crewmembers have manifested clinical signs or symptoms of the VIIP syndrome, it is assumed that all astronauts exposed to microgravity have some degree of ICP elevation in-flight. Prolonged elevations of ICP can cause long-term reduced visual acuity and loss of peripheral visual fields, and has been reported to cause mild cognitive impairment in the analog terrestrial population of idiopathic intracranial hypertension (IIH). These potentially irreversible health consequences underscore the importance of identifying the factors that lead to this syndrome and mitigating them.

Suspected pathophysiological mechanisms leading to VIIP clinical manifestations:
1) Cephalic fluid shifts and loss of gravity assisted venous drainage from the brain leads to:
2) Increased ICP, which is manifested with:
3) Structural and functional changes to the eye.

The VIIP Research Plan

The integrated VIIP program that has been developed includes efforts to decrease environmental contributing factors such as elevated carbon dioxide levels onboard the ISS and sodium levels in space foods (operational efforts), development of Clinical Practice Guidelines for guiding diagnosis and treatment of affected crewmembers (clinical efforts), data mining of previously collected data to find patterns of susceptibility to VIIP development (occupational surveillance efforts), and a research program encompassing over 70 current, planned, and completed studies, of which about 25 are currently in progress. These studies are aimed at understanding the interaction of the microgravity environment with the ocular, cardiovascular, and central nervous systems.

ACKNOWLEDGEMENTS: This work was funded by NASA.