Finite Element Estimation of Meteorite Structural Properties

Kenneth “Kip” Hart

Georgia Institute of Technology

6 August 2015
• Project Description
 - Goal is to develop meteor risk assessment tools
 - Entry Systems Division (TS) role: meteor entry and breakup
 - Breakup conditions are determined by meteor’s structural, strength properties

• Contributions
 - Literature survey on meteor structural properties
 - Study the effect of scale on homogeneity/isotropy of meteorites
 - Nastran FEA of irregularly-shaped meteor
 - Develop ideas for PhD research
Literature Survey

- Chondrite meteorites have three components:
 - Chondrules: round stones, silicates, 1-2mm wide
 - Inclusions: feldspar, metal refractories, similar size
 - Matrix: sub-micron particles, low strength

- Meteorite bulk properties can be estimated from constituent properties and composition

<table>
<thead>
<tr>
<th>Property</th>
<th>Kamacite</th>
<th>Taenite</th>
<th>Forsterite</th>
<th>Fayalite</th>
<th>Pyroxene</th>
<th>Quartz</th>
<th>Concrete</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>7.90</td>
<td>7.8-8.22</td>
<td>3.275</td>
<td>4.392</td>
<td>3.0-4.0</td>
<td>2.20</td>
<td>3.1-5.8</td>
<td>g/cc</td>
</tr>
<tr>
<td>Young’s Modulus</td>
<td>186-206</td>
<td>130-198</td>
<td>195</td>
<td>134</td>
<td>120-190</td>
<td>72</td>
<td>25</td>
<td>GPa</td>
</tr>
<tr>
<td>Poisson’s Ratio</td>
<td>0.24-0.42</td>
<td>0.37-0.44</td>
<td>0.25</td>
<td>0.33</td>
<td>0.21-0.30</td>
<td>0.17</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Shear Modulus</td>
<td>70-78</td>
<td>56-72</td>
<td>78</td>
<td>52</td>
<td>47-78</td>
<td>31</td>
<td>10</td>
<td>GPa</td>
</tr>
<tr>
<td>Compressive Yield Strength</td>
<td>306-380</td>
<td>760</td>
<td>323</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>398-520</td>
<td>840</td>
<td>437</td>
<td></td>
<td>81-480</td>
<td>1100</td>
<td>17-36</td>
<td>MPa</td>
</tr>
<tr>
<td>Tensile Yield Strength</td>
<td>300-400</td>
<td>200-600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MPa</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>43</td>
<td>500-1100</td>
<td>62</td>
<td></td>
<td>11-26</td>
<td>48</td>
<td>2.5-7.0</td>
<td>MPa</td>
</tr>
</tbody>
</table>

*Data are valid at sea-level temperature and pressure.

Need test data to fill in the blanks, especially at entry-relevant conditions
Effect of Scale on Homogeneity

• Constituents have significantly different material properties
 - Density can vary from 2 to 8 g/cc
 - Young’s modulus varies from 100 to 200 GPa
 - Matrix material is very weak, sub-micron particles

• Study sensitivity of chondrite properties to varied constituent properties
 - Unit cell computer experiments
 - Cracks and voids neglected in analysis

6 August 2015
Effect of Scale on Homogeneity

Upper half of a stress cube, simulated in MSC Nastran. Plotted is the e_{zz}-strain due to a uniform pressure applied normal to the z-surface. Nodes on the plane of symmetry are free to move in the xy-plane, restricted in rotation and z-motion.

Stress cube is 75% chondrules, 15% metal, 5% feldspar, and 5% matrix by volume.

The average strain tensor, ε, provides the Young’s modulus and Poisson’s ratios of the cube.

$$E_z = \frac{\sigma_{zz}}{\varepsilon_{zz}}$$
$$\nu_{zy} = \frac{\varepsilon_{yy}}{\varepsilon_{zz}}$$
$$\nu_{zx} = \frac{\varepsilon_{xx}}{\varepsilon_{zz}}$$

<table>
<thead>
<tr>
<th>Material</th>
<th>E (GPa)</th>
<th>ν (-)</th>
<th>% Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chondrule</td>
<td>190</td>
<td>0.23</td>
<td>75%</td>
</tr>
<tr>
<td>Metal</td>
<td>208</td>
<td>0.27</td>
<td>15%</td>
</tr>
<tr>
<td>Feldspar</td>
<td>103</td>
<td>0.3</td>
<td>5%</td>
</tr>
<tr>
<td>“Matrix”</td>
<td>0.001</td>
<td>0.49</td>
<td>5%</td>
</tr>
</tbody>
</table>
Effect of Scale on Homogeneity

Distribution of Young’s Modulus with Random Arrangement of Constituents

Ordinary chondrites 12x larger than chondrules & inclusions are homogenous/isotropic.

As the relative size of the cells decreases compared to the size of the stress cube, the arrangement of the constituents within the cube becomes less significant. This is illustrated by the decrease in variance with increase in number of cells.

Each probability density function (PDF) is the result of +1000 Monte Carlo runs.
Static stress distribution in a meteor with the geometry of Itokawa at the size of Chelyabinsk (~20m), estimated using MSC Nastran. The loading is a surface pressure distribution from CFD. Stagnation pressure is 30 atm (~3 MPa) at a velocity of 20 km/s.

Top The leeward half of the meteor, colored by maximum principle stress. Tensile failure will likely occur at the “neck” of the meteorite.

Bottom The windward half of the meteor, colored by minimum principle stress. In compression, prominent surface features will likely fail first.
PhD Research Idea

• How strong can a meteoroid be?
 - Goal: develop a methodology to generate PDFs of the strength of stony meteoroids, given unknowns about cracks, voids, etc.
 ▪ Meteoroid strength and uncertainty are needed in a PRA environment
 ▪ Ancillary contribution: benefits hypothetical “disruption” mission design
 - Modeled from historical data, computer simulations
 ▪ Simulation specs TBD - FEM vs DEM, fabric tensor, peridynamics
 ▪ Validated against destructive testing, ballistic firing of meteorite samples or analog materials, e.g. basalts & concrete
 - PDF based on 3 levels of information, categories
 ▪ Unresolved body (most likely)
 ▪ Resolved body - spectra & radar measurements (somewhat likely)
 ▪ Probed/visited body - nearly everything known (unlikely)
 - Potential Contributions
 ▪ Validated meteorite structural analysis tool
 ▪ Sensitivity analysis on factors affecting meteoroid strength
 ▪ Probabilistic prediction of metrics from historical data and simulation
• Ames is applying EDL know-how to meteor entry

• Breakup event is largely dependent on exo-atmospheric structure, composition of meteoroid

• Some material properties found in the literature

• Effect of scale on homogeneity determined through FEA

• Stresses on irregular geometries estimated with Nastran

• Interest in continuing meteoroid research for PhD at GT
Acknowledgments

• Jim Arnold
• Raj Venkatapathy
• David Hash
• Craig Burkhard

• Dinesh Prabhu
• Parul Agrawal
• Alberto Makino
• Alex Carlozzi

6 August 2015
Questions?
National Aeronautics and Space Administration

Ames Research Center
Entry Systems and Technology Division
Effect of Scale on Homogeneity

FEA Estimation of the Effect of Scale on Isotropy of Chondritic Material

Poisson's Ratio

Number of Cells Along Cube Edge