Comparison of Computational Results with a Low-g, Nitrogen Slosh and Boiling Experiment

51st AIAA Joint Propulsion Conference
July 27, 2015

Mark Stewart
VPL at NASA Glenn Research Center

Jeff Moder
NASA Glenn Research Center
Outline

• Background and Motivation:
 • Cryogenic fluid behavior in flight conditions
 • Long-term, in-space storage of cryogenic propellants for future exploration missions

• Problem Setup:
 • Geometry & grid
 • Fluent settings
 • Fluid properties (N₂): temperature, pressure dependent?
 • UDF for condensation / evaporation
 • UDF for non-inertial reference frame
 • Time-dependent acceleration and Bond number
 • Boundary conditions
 • Procedure for initial conditions

• Comparison with experimental data:
 • Initial thermal profile
 • Visual comparison with high-speed movie
 • Pressure data: balance of evaporation and condensation
 • Net heat transfer/boiling heat transfer rate
 • Comparison with temperature sensor data
Background & Motivation

• Background:
 • LN2 tank in 2010 low-g parabolic aircraft campaign
 • Significant condensation, evaporation, & boiling
 • Simulation compared to one low-g parabola

• Motivation:
 • Cryogenic fluid behavior in flight conditions
 • Long-term, in-space storage of cryogenic propellants for future exploration missions
Geometry & Grid

- 3-Dimensional grid, 360 degree sector
- Fluid Grid: 569,110 Cells
 - In interior, uniform, structured grid
 - 1 mm resolution
- Solid Grid: 685,858 Cells
 - Unstructured grid
 - Variable resolution
- Thermal isolation at joint, sealing gasket
- Post mounted temperature sensors, not simulated
- Currently, no refinement
- Partitioned for 16 or 32 processors

- Fluid tank dimensions:
 - Radius: ~3 cm
 - Height: ~10 cm
- Slosh frequency:
 - Observed ~4 Hz
 - Calculated 5.0 Hz
Geometry & Grid

- Joint (Thermally Insulated)
- Sapphire Window
- Lid Surface
- Aluminum Lid
- Cryo Cooler
Fluent Setup for Simulations

- Simulations performed using ANSYS Fluent version 13;
- 3D grid of fluid and solid regions
- Mass, momentum, energy, turbulence PDEs
- Compressible, ideal gas; Boussinesq liquid
- Fluid properties of nitrogen for fluid viscosity, thermal conductivity, specific heat, latent heat of vaporization, surface tension at 77.244K, 1 bar from webbook.nist.gov/chemistry/fluid
- Solid: temperature dependent density, specific heat, and thermal conductivity from CNES for inox (stainless steel), aluminum, and sapphire
- Volume of Fluid (VOF) for 2-phase flow
- k-ω SST turbulence model of Menter et. al. (turbulent damping = 10)
- UDF for mass transfer at liquid/ullage interface, boiling, and gas phase condensation
- UDF for non-inertial acceleration,
- Boundary conditions on later slide,

- Second order upwind scheme was used for discretization of the mass, momentum, energy, and turbulence, (cell values)
- PISO scheme was used for the pressure-velocity coupling (cell values)
- Least Squares Cell Based scheme was used for the gradient calculations (face values)
- PRESTO! scheme was used for the pressure interpolation (face values)
- First order implicit time discretization was used, also bounded second order implicit
- Time step = 1e-04 seconds
- Extensive instrumentation of the simulation
Temperature & Pressure Dependence of Fluid Properties

- Initially used constant properties for μ, κ, C_p, at 77.244K, 1 bar, but ~10% error
- Range of temperature and pressure: 70-110 K; 1 – 3 bar
- Well represented by simple polynomial in temperature:
 - Viscosity μ, (vapor & liquid)
 - Thermal conductivity κ, (vapor & liquid)
 - Surface tension, γ
 - C_p liquid
- Varies with both temperature and pressure:
 - C_p gas
 - Heat of vaporization / condensation
 - Z varies ~8% (Ideal gas assumption)
Evaporation/Condensation UDF

- Mass transfer and heat of vaporization/condensation

- Based on Hertz-Knudsen-Schrage equation:
 \[\dot{m}_{net} = \frac{2}{2 - \sigma_{cond}} \sqrt{\frac{MW_{vap}}{2\pi R_u}} \left(\sigma_{evap} P_{sat}(T_{liq}) - \sigma_{cond} P_{vap} \right) \]
 kg/s-m² Evaporation is +ve

- Assume: \(\sigma_{cond} = \sigma_{evap}; \) \(T_{vap} = T_{liq}; \)
- \(\text{Constant}(\sigma) \times (P_{sat}(T) - P)/\sqrt{T}/\text{length_scale} \) for local P, T
 - Enforces saturation conditions on interface

- UDF Define_Adjust() calculates mass transfer; UDF Define_Mass_Transfer() applies
- Requires kg/s-m³, hence length_scale = sqrt(1/|grad c|²), c is VOF fraction

- Different situations, different accommodation coefficients:
 - Interface condensation, \(\sigma = 1.0 \times 10^{-4} \) is ‘best’ fit
 - Interface evaporation, \(\sigma = 1.0 \times 10^{-4} \) is ‘best’ fit
 - Boiling (liquid phase evap), \(\sigma = 5.0 \times 10^{-3} \) is ‘plausible’ fit
 - Gas phase condensation, \(\sigma = 1.0 \times 10^{-4} \) is used

- Boiling—vaporization away from a liquid/vapor interface:
 - Superheat criteria in each cell: \(T_{\text{max}} - T_{\text{sat}}(P) > 5 \text{ K} \) \(T_{\text{max}} \) is max in cell (walls too)
 - Dry boiling cut-off
- \(P_{\text{sat}}(T) \) by curve fit from Reynolds, *Thermodynamic Properties in SI*
- \(T_{\text{sat}}(P) \) curve fit to NIST data
Non-Inertial Reference Frame UDF

- Non-inertial reference frame accounts for:
 - Linear acceleration of aircraft, \(\mathbf{a} \)
 - Angular rotation, \(\mathbf{\omega} \), and angular acceleration, \(\mathbf{\alpha} \) (not present)

\[
\hat{\mathbf{a}}_{cg} + 2\mathbf{\omega} \times \mathbf{v} + \dot{\mathbf{\omega}} \times \mathbf{r} + \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r})
\]

- In general, piece-wise linear fit to \(\mathbf{a}, \mathbf{\omega}, \mathbf{v}_r \) samples

- Here, acceleration, \(\mathbf{a} \), sampled at 2 Hz, 10 Hz
 - Two components: \(a_x, a_z \); assume \(a_y = 0 \)
 - Piece-wise linear fit to supplied \(a_x, a_z \)
 - Initial conditions: steady acceleration
 \(a_x = -16.5 \text{ m/s}^2, \ a_y = 0, \ a_z = -1.93 \text{ m/s}^2 \)

- UDF Define_Source adds terms to RHS of momentum equations as \(\rho \mathbf{a} \), (kg m\(^2\)/s\(^2\)), and RHS of energy eqn. as \(\rho \mathbf{a} \cdot \mathbf{v} \), (kg m\(^3\)/s\(^3\))

- Fluent has trouble with microgravity
 - Issues at \(O(\ a/g) \sim 10^{-6} \)
 - No issues at \(O(\ a/g) \sim 10^{-5} \)
Simulation Conditions: Bond Number

Bond number:
- Range \([0.3, 6.]\)
- Mean 2.
- \(O(1)\) for 10 s
- Surface tension forces/body forces
- Eötvös number

Acceleration due to gravity at 10 Hz supplied by CNES
- 2 components: \(g_x, g_y\)
Boundary Conditions

- Heat fluxes total ~4 W
- Assumed constant on surface of each part
- Due to radiation & conduction
- Liquid-to-vapor contact angle: 5 degrees
- Initial constant acceleration:
 - $a_x = -16.4993 \, \text{m/s}^2$; $a_x/g = -1.682$
 - $a_y = 0$.
 - $a_z = -1.9325 \, \text{m/s}^2$; $a_z/g = -0.197$
- Initial interface
 - Position: ~60 mm from bottom
 - Angle: from initial acceleration
Initial Thermal Conditions

- Initial conditions by transient fluid-thermal simulation
 - Constant gravity
 - 90 s with time step of 4.0×10^{-4} s
- Thermal isolation at joints
Vapor and sealing gasket create insulation (high temperature gradient)

- Inox lid heats up in high-g interval with vapor at top
- With low-g, re-orientation, liquid impinges on hot lid, and boils
- Heat Transfer: surface boiling, departure of bubble, condensation
- Heat transferred into well-mixed liquid with high heat storage capacity
Section 2: Comparison with Experimental Data

• Initial temperature profile
• Visual comparison with high-speed movie
• Pressure data: balance of evaporation and condensation
• Net heat transfer/boiling heat transfer rate
• Comparison with temperature sensor data
Initial Thermal Conditions

Top Lid Center	t12a	30.4	0.3
Top Lid Edge	t12b	15.2	3.4
Top Lid Side	t12c	4.4	0.9
t12d	4.2	0.9	
t12e	3.5	0.0	
t12f	3.4	-0.1	
t12g	3.3	-0.2	
t12h	3.3	-0.2	
t12i	3.2	-0.2	
t12j	3.0	-0.3	
t12k	2.6	-0.1	
t12l	2.6	0.4	

- Discrepancy near t12b in high temperature gradient: gasket modeling?
- Discrepancy near t12l and lower lid: specified heat fluxes?
Initial Re-orientation of Surface

- 00:14 in data
- T=93.5 s in CNES_5C_7
Heavy Boiling Phase with Condensation and Transit

00:26 in data

T=96.75 s in CNES_5C_7
Condensation and Evaporation: Both Large, Almost Cancel
Pressure Evolution

\[\sigma_{\text{evap}} = \sigma_{\text{cond}} = 1 \times 10^{-4} \]

\[\sigma_{\text{evap}} = \sigma_{\text{cond}} = 2 \times 10^{-4} \]
Internal Energy: A Measure of Heat Transfer

Is Boiling Heat Transfer Rate Correct?

\[\int_{\text{vol}} \rho_{\text{liq}}(T - T_{\text{ref}}) C_{\text{v liq}} \nu_{\text{liq}} d\text{Vol} \]

- Liquid Delta Internal Energy
- Vapor Delta Internal Energy
- Ax/g

Estimated \(\Delta \text{Internal Energy from Experiment: 1050 J} \)
Results: Wall Temperatures
Results: Temperature Sensor T12G

![Graph showing temperature changes over time for T12G, CNES T12G, and Ax/g.]
Fluid Temperature on Midplane

Time = 89.994
Results: Temperature Sensor T12A
Temperature Sensors: Dry-to-Wet, Wet-to-Dry

- Diode sensors time constant: $\tau = 0.1$ s
- 95% in 3 time constants, τ
- Hot gas exposure duration is 0.3 – 0.5 s (one-way)
- Wet-to-dry transition includes a liquid film that must vaporize, before gas
- Wet-to-dry time delays observed experimentally
Sensors: Wet-to-Dry With Drainage

- Temperature discrepancy between T12a sensor (top) and simulation
- After low gravity phase (final re-orientation), as lid should be heating vapor to create a stable thermal stratification
- Experimental geometry is different: fill line and valve
- Wet-to-dry transition complicated by drainage?
- Drainage of liquid visible, in experiment, 2 s after final re-orientation
- Some simulations show waves in thermal stratification, others do not
Summary

- Presentation: setup of Fluent and comparison with experimental results
 - Initial temperature profile
 - Visual comparison with high-speed movie
 - Pressure data
 - Net heat transfer/boiling heat transfer rate
 - Comparison with temperature sensor data

- Generally, good agreement with experimental data

- Evidence for low sensitivity of wet-to-dry temperature sensors

- Limitations of boiling model

- Limitation in prediction of condensation / evaporation

- Future work:
 - Further analysis of thermal layers near fluid/vapor interface
 - Grid resolution studies