Electron Beam Irradiated Intercalated CNT Yarns For Aerospace Applications

Deborah L. Waters, James R. Gaier, Tiffany S. Williams
NASA Glenn Research Center

Johnny E. López Calero
University of Puerto Rico at Mayaguez

Christopher Ramirez
The University of Texas at El Paso

Michael A. Meador
National Science and Technology Council
Background and Goals

- Previous data suggested that yarns irradiated by an e-beam showed an improvement in tensile properties.
- CNT fibers and yarns could potentially be used for multifunctional devices - electrical conductor, data line as well as a tendon for movement.
- Electrical conductivity could be doubled with intercalation - **100 kS/cm** is needed to equal copper’s specific conductivity.
- Goal: To determine the effects of intercalation and irradiation on the electrical and mechanical properties of CNT yarns.
CNT Fibers

• Nanocomp Technologies NB87 and NB106

• “(Nanocomp Technology Inc.) production systems generate a "cotton candy" or "stocking-like" flow of millimeter-length CNTs that can be translated into multiple formats, each of which possess a different mix of strength and conductivity”, including lightweight wires and yarns

http://www.nanocomptech.com/conductors-and-yarns
Electron Beam

- NEOBeam is an electron beam accelerator owned by Mercury PlasKcs, Inc. (Middlefield OH)
- It is used to cross-link polymeric materials
- 2 MV electron beam (capable of 5 MV)
- The electrons break C-H bonds and facilitate C-C bonds

http://www.mercuryplastics.com/neo-beam
Intercalation of CNT yarns

- Treat CNT fibers in glass reaction vessel with a combination of Bromine, Chlorine and Iodine
- Halogen concentrations and temperatures were held constant for the reactions in the test matrix
Test Equipment

Conductivity – 4-Point Probe Resistance measurement

Tensile Testing – Instrumet Corporation
RENEW 1125

Raman Spectroscopy - Renishaw System 2000 Microscope with Ar+ ion laser at 514 nm

SEM/EDS – Hitachi S-3500N / Thermo Scientific UltraDry 4455D
Results – Conductivity With Time – NB87

- As-Received
- Int
- EB 20 min
- EB 40 min
- Int+EB 20 min
- Int+EB 40 min
- EB 20 min+Int
- EB 40 min+Int

Conductivity (kS/cm) vs. Time After Last Processing Step (days)
Results – Conductivity With Time – NB106

![Graph showing Conductivity vs. Time for different processing steps: As-Received, Int, EB, Int+EB, EB+Int. The graph includes data points for time intervals of 20 and 40 minutes.]
Results – Conductivity (kS/cm) NB87 (solid) and NB106 (striped)
Results – Tensile Test – NB87 Int + E-beam 40 min

4 Samples Tested
Results – Normalized Strength (N/tex)
NB87 (solid) and NB106 (stripes)
Results - Raman Spectroscopy

NB87 As-Received

NB87 E-beam 40 min

NB106 As-Received

NB106 E-beam 20 min
Results – Raman D/G Ratios

<table>
<thead>
<tr>
<th>Fiber</th>
<th>As-Received</th>
<th>Int</th>
<th>EB 20 min</th>
<th>EB 40 min</th>
<th>Int + EB 20 min</th>
<th>Int + EB 40 min</th>
<th>EB 20 min + Int</th>
<th>EB 40 min + Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB87</td>
<td>0.12</td>
<td>0.28</td>
<td>0.09</td>
<td>0.27</td>
<td>0.22</td>
<td>0.07</td>
<td>0.29</td>
<td>0.23</td>
</tr>
<tr>
<td>NB106</td>
<td>0.17</td>
<td>N/A</td>
<td>0.32</td>
<td>0.23</td>
<td>0.21</td>
<td>0.09</td>
<td>0.24</td>
<td>0.28</td>
</tr>
</tbody>
</table>
Results – SEM
NB87

As-Received

Int + E-beam 20 min
Results – SEM
NB106

As-Received

Int + E-beam 20 min
Results – EDS – NB87

E-beam exposes the chlorine which is used in the manufacturing process
Intercalation halogens appear and are reduced after E-beam
Conclusions

• Overall, for CNT electrical wires the NB106 performed better than the NB87 fibers in both conductivity and tensile properties.

• Mechanical strength of these particular fibers is not increased with the additional step of the e-beam beyond statistical error, but could help if intercalation is done in some cases.

• Conductivity decreases with time in general for these samples:
 • NB87 conductivity almost doubles with intercalation, it also shows an increase for any of the other processing steps.
 • NB106 conductivity approximately doubles with intercalation, intercalation before and after e-beam also shows an increase in conductivity, e-beam alone shows a decrease in conductivity.
Conclusions

- Raman showed some inconsistent results and should be repeated on a different Raman for verification.
- SEM generally showed some visual smoothing of NB87 surfaces after processing while the NB106 samples all appeared very similar.
- EDS showed consistently that the e-beam removed the halogenated materials unless intercalation took place after the e-beam.
Future Work

- Increase the conductivity of the wires through changes in reaction time, concentration and temperature
- In-situ resistance measurements during the reaction process to determine optimum conditions for intercalation
- Coat the intercalated fibers to slow the diffusion of halogens out of the fibers
- Stability of the fibers in other environments such as humidity and changing temperature
- Re-run test matrix samples on another Raman unit
Acknowledgments

Jeffrey Eldridge – NASA GRC
Marisabel Lebron Colon – NASA GRC
Azlin Biaggi Labiosa – NASA GRC
Phillip Abel – NASA GRC
Dan Scheiman – Ohio Aerospace Institute
Bradlee Beauchamp – Rose-Hulman Institute of Technology
Kiara Rivera Rodriguez – University of Puerto Rico Mayaguez
Professor Roberto Uribe – Kent State University