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Motivation

I Computational Aeroacoustics (CAA) codes are increasingly
used to simulate complex physics, make design decisions, etc.

I All software has bugs[1]. How can we know we’re getting the
right answer out of our CAA code?
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Code Verification

I Code verification: “are we solving the equations right?” All
about the math/numerics. Goal is to detect bugs.

I Gold-standard of code verification: the order-of-accuracy test.
Does the error behave as we expect, i.e., converge at the rate
of the order-of-accuracy of the code’s schemes, p?

I ε ≈ Ahp

I So, we need the code’s error, i.e., the difference between the
code’s solution and a reference solution.

I Where do we get a reference solution?
I Method of Exact Solutions (MES)
I Method of Manufactured Solutions (MMS)
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Reference Solutions for Code Verification: State of the Art

Method of Exact Solutions (MES)

Look in a textbook (or paper, etc.) for a solution to the PDE the
code solves.

I Advantages: Simple, no modifications to PDE code.

I Disadvantages: available solutions tend to be either tricky to
evaluate numerically (infinite series, integrals, etc.), or too
simple (terms go to zero, etc.), or both.

Method of Manufactured Solutions[2, 3] (MMS)

Start with the solution you want, then change the PDE to make it
work.

I Advantages: General and flexible — user chooses the solution.

I Disadvantages: Source terms must be added to the PDE, and
thus the code, which can be quite complicated for non-trivial
PDEs.
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The Ideal Code Verification Method

I The complication of MMS source terms appears to limit the
popularity of MMS.

I Characteristics of an ideal code verification method?
I Flexibility of MMS: user has control over the form of the

solution.
I Unobtrusiveness of MES: no modifications of PDE, or code.

I External Verification Analysis (EVA) is intended to fulfill these
requirements.

Goals of this work

I Show how EVA can provide a reference solution for the
nonlinear Navier-Stokes equations suitable for code
verification,

I Use EVA to verify a high-order, viscous Computational
Aeroacoustics code.
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EVA: An Approximate Solution to the Cauchy Problem
I Express PDE as a Cauchy (initial value) problem,

∂u

∂t
= H

(
x , t,

∂αu

∂xα

)
; u(x , t = 0) = v(x)

I Use a Taylor series to approximate u(x , t) as

u (x , t) ≈ u(x , 0) + t
∂u(x , 0)

∂t
+

1

2
t2
∂2u(x , 0)

∂t2
+ · · · t

p

p!

∂pu

∂tp
.

I The EVA approach: use the above truncated series combined
with an analytic initial condition as a reference solution for
code verification.

I Cauchy-Kowalewski (CK) recursion: repeatedly differentiate
governing equation, eventually expressing. . .

∂nu

∂tn
→ ∂mu

∂xm

I Differentiate the analytic initial condition exactly.
I Details in the paper!
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A Recurrence Relation for (Derivatives of) the
Navier-Stokes Equations

I Recurrence relation for the continuity equation:

∂b+d+n+1σ

∂xb ∂yd ∂tn+1
= −

b∑
a=0

(
b

a

) d∑
c=0

(
d

c

) n∑
m=0

(
n

m

)[
∂b−a+d−c+n−mu

∂xb−a ∂yd−c ∂tn−m
∂a+1+c+mσ

∂xa+1 ∂y c ∂tm

+
∂b−a+d−c+n−mv

∂xb−a ∂yd−c ∂tn−m
∂a+c+1+mσ

∂xa ∂y c+1 ∂tm

− ∂b−a+d−c+n−mσ

∂xb−a ∂yd−c ∂tn−m

(
∂a+1+c+mu

∂xa+1 ∂y c ∂tm

+
∂a+c+1+mv

∂xa ∂y c+1 ∂tm

) ]
.

I Using the specific volume σ = 1
ρ (makes the math easier).

I Not as bad as it looks. Like Dyson and Goodrich[4], using
Leibniz rule to differentiate products.
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The Initial Condition
I Final piece of the puzzle: initial condition (IC). EVA uses an

analytic IC.
I Since EVA solves a Cauchy (read: initial value) problem, no

particular boundary conditions (BCs) are enforced. So an IC
with a “footprint” helps us avoid problems with the PDE
code’s BCs.

I The IC currently implemented in EVA tool:

φ(x , y , z) = φ

+ φ̃ exp

(
− log(2)

b2

[
(x − x0)2 + (y − y0)2 + (z − z0)2

])
· sin (kxx + kyy + kzz + θ)

= φ+ φ̃E (x , y , z) · I (x , y , z)

I Need to be able to calculate arbitrary-order derivatives of the
initial condition.

I Benefit from analytic derivatives: EVA solution is completely
unaffected by grid/mesh used!
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The Computational Aeroacoustics Code: BASS

I Broadband Aeroacoustic Stator Simulator from NASA Glenn

I High-order, parallel, block-structured finite-difference
Computational Aeroacoustics solver with explicit, optimized
time-marching

I Inviscid or Viscous, 2D or 3D
I Spatial differencing schemes

I E 2: Explicit 2nd-order
I E 6: Explicit 6th-order
I DRP: Tam & Webb Dispersion Relation Preserving[5]
I C 6: Hixon’s[6] prefactored form of Lele’s[7] compact 6th-order

I Time marching schemes
I RK4L, RK5L: Jameson[8] four- and five-stage Runge-Kutta,
I RK56: Stanescu and Habashi[9] five/six stage Runge-Kutta,
I RK7S, RK67: Allampalli et al.[10] High-Accuracy Large-step

Explicit Runge-Kutta (HALE-RK) seven and six/seven-stage
schemes.

I Modified BASS to use constant viscous properties.
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Verification Process

1. Identify (at least) formal order-of-accuracy of CAA code’s
numerical schemes,

2. Choose test case parameters,

3. Run EVA,

4. Run CAA code with range of “discretization measures” (grid
spacings or time step sizes),

5. Calculate error and some error norm,

6. Calculate error norm convergence rate, compare to CAA
code’s formal order-of-accuracy.
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Spatial Test Case Parameters

I Skewed, rotated, and “perturbed” 3D grid series.

I RK7S time marching scheme with a single very small time
step ∆t = 0.0005 (far-field acoustic velocity is 1).

I Initial condition has an approximate wavenumber
k̃ = 2π

0.25 = 8π, which, when combined with the grid spacings
chosen, give a range of points-per-wavelength from 2 to 50.
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Test Case Parameters: Grid
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Test Case Parameters: Gaussian Centers
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Test Case Parameters: ρ Initial Condition
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Test Case Parameters: ρw Initial Condition
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BASS Spatial Verif.: ρ, l2, A∆xp Assumption
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BASS Spatial Verif.: Multiblock Grid for Parallel Runs
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BASS Spatial Verif.: ρ, l2, A∆xp Assumption, Parallel
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BASS Spatial Verif.: ρv , C 6 Serial vs. Parallel
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Temporal Test Case Parameters

I Grid and initial condition identical to the spatial test cases.

I Used E 6 scheme for spatial differencing.

I Marched to a final time level of t = 0.05 with an EVA target
truncation error of 10−12, which required a 26th-order Taylor
series.

I Combination of time step size and initial condition gives a
steps-per-period range of 5 to 200.
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BASS Temporal Verif.: ρ, l2, A∆tp Assumption
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BASS Temporal Verif.: ρ, l2, A∆tp + B Assumption
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BASS Temporal Verif.: RK4L Low vs. High Amp.
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Conclusions

I EVA provides a flexible method for obtaining a reference
solution suitable for code verification

I Extended to support 3D nonlinear Navier-Stokes.
I No modification to CAA code required.
I EVA doesn’t care about the quality of the grid (just like an

exact or manufactured solution).

I EVA was used to verify the spatial and temporal schemes in
BASS, a high-order CAA solver.

I Each scheme eventually converged at the expected rate,
strongly verifying the code.

I Overall, error and convergence rates corresponded well to
linear analysis of the schemes (see paper).

I Needed more general A∆tp + B assumption when calculating
convergence rate for the high-order time-marching schemes.

I Saw linear/nonlinear behavior for RK4L scheme (4th-order
linear, 2nd-order nonlinear).
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Future Work

I Current limitations of the EVA approach to code verification:
I Boundary conditions,
I Non-constant properties (i.e., viscosity and thermal

conductivity),
I Finding the asymptotic range.

I More codes(?)
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The End
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MES Example
From Knupp & Salari[11], the exact solution to unsteady
homogeneous heat conduction in a solid sphere is

T (r , µ, φ, t) =
1

π

∞∑
n=0

∞∑
p=1

n∑
m=0

e−αλ
2
npt

N(m, n)M(λnp)
Jn+1/2(λnpr)Pm

n (µ)

∫ b

0

∫ 1

µ0

∫ 2π

0
r ′
3/2

Jn+1/2(λnpr
′)P−mn (µ′) cos

(
φ− φ′

)
F (r ′, µ′, φ′) dφ′ dµ′ dr ′

where

N(m, n) =

(
2

2n + 1

)
(n + m)!

(n −m)!

M(λnp) =
b2

2

[
Jn+1/2 (λnpr)

]2
.

Takeaway

Exact solutions are simultaneously too complex, too simple.
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What is the Method of Manufactured Solutions[2, 3]? I

I The “backwards approach:” start with the solution you want,
then change the PDE to make it work.

I Simple example with the linear advection equation:

1. The manufactured solution:

û(x , t) = sin(x − bt)

2. The PDE:
∂u

∂t
+ a

∂u

∂x
= 0,

3. Get the MMS source term by putting the manufactured
solution in the PDE:

S(x , t) =
∂û

∂t
+ a

∂û

∂x
= [sin(x − bt)]t + a [sin(x − bt)]x
= (a− b) cos(x − bt).
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What is the Method of Manufactured Solutions[2, 3]? II

4. Add S(x , t) to the PDE to make û an exact solution:

∂u

∂t
+ a

∂u

∂x
= S(x , t) = (a− b) cos(x − bt).

5. Use û as the reference solution.

I Advantages
I General: applicable to any PDE.
I Flexible: user chooses the solution, so all aspects of PDE code

can be tested

I Disadvantages
I MMS source term can be complicated (but computer algebra

system software [CAS] helps)
I PDE code must allow for user-specified distributed sources, or

be made to.
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MMS in the “Real World”
I Surveyed a recent volume of the Journal of Computational

Physics[12] and Computers & Fluids[13] (total of 69 articles)
I Was code verification performed? If so, how?
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Cauchy-Kowalewski Recursion: What is it?

I Cauchy-Kowalewski (CK) recursion: fancy math technique for
getting the temporal derivatives needed for the Taylor series
coefficients by repeatedly differentiating the original PDE.

I Used in the proof of the Cauchy-Kowalewski theorem, a local
existence and uniqueness theorem for PDEs.

I Occasionally used to integrate PDEs numerically:
I Dyson & Goodrich’s MESA [14, 4, 15]
I Castro & Toro’s ADER [16, 17]
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CK Recursion: How it works

I Goal: to express ∂mu
∂tm in terms of ∂nu

∂xn .
I Two “phases” CK recursion:

1. Find ∂nu
∂tn by taking t-derivative ∂n−1u

∂tn−1 ,

2. Look at ∂nu
∂tn , finding all unknown mixed-x-t derivatives by

taking x-derivatives of known expressions, repeating until only
pure x-derivatives remain.

I See paper for all the (very exciting!) details.
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CK Recursion: Viscous Burgers Dependency Graphs
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Differentiating Governing Equations with the Leibniz Rule

I Problem: CK recursion requires repeated differentation of the
governing equation (here, 3D nonlinear Navier-Stokes).

I The terms in the flow equations that give us trouble are
products (u ∂v∂x , etc.).

I Is there a pattern?
I u ∂v

∂x

I d
dx

(
u ∂v
∂x

)
= ∂u

∂x
∂v
∂x + u ∂2v

∂x2

I d2

dx2

(
u ∂v
∂x

)
= ∂2u

∂x2
∂v
∂x + 2∂u

∂x
∂2v
∂x2 + u ∂3v

∂x3

I d3

dx3

(
u ∂v
∂x

)
= ∂3u

∂x3
∂v
∂x + 3∂2u

∂x2
∂2v
∂x2 + 3∂u

∂x
∂3v
∂x3 + u ∂4v

∂x4
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Differentiating Governing Equations with the Leibniz Rule

I The Leibniz rule: generalization of the product rule from
calculus:

(f · g)(n) =
n∑

k=0

(
n

k

)
f (k)g (n−k)

I
(
n
k

)
: (n, k) binomial coefficient (Pascal’s triangle).

I So,
I (f · g)(0) = fg
I (f · g)(1) = f (1)g + fg (1)

I (f · g)(2) = f (2)g + 2f (1)g (1) + fg (2)

I (f · g)(3) = f (3)g + 3f (2)g (1) + 3f (1)g (2) + fg (3)

I Approach: As in Dyson[4], repeatedly use Leibniz rule to
differentiate with respect to each variable (x , y , z , t), giving
recurrence relation for all the derivatives needed for CK
recursion.
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Recurrence Relation for the Navier-Stokes
I The x-momentum equation:

∂b+d+n+1u

∂xb ∂yd ∂tn+1
= −

b∑
a=0

(
b

a

) d∑
c=0

(
d

c

) n∑
m=0

(
n

m

)[
∂b−a+d−c+n−mu

∂xb−a ∂yd−c ∂tn−m
∂a+1+c+mu

∂xa+1 ∂y c ∂tm

+
∂b−a+d−c+n−mv

∂xb−a ∂yd−c ∂tn−m
∂a+c+1+mu

∂xa ∂y c+1 ∂tm

+
∂b−a+d−c+n−mσ

∂xb−a ∂yd−c ∂tn−m
∂a+1+c+mp

∂xa+1 ∂y c ∂tm

− µ ∂b−a+d−c+n−mσ

∂xb−a ∂yd−c ∂tn−m

(
4

3

∂a+2+c+mu

∂xa+2 ∂y c ∂tm

+
1

3

∂a+1+c+1+mv

∂xa+1 ∂y c+1 ∂tm

+
∂a+c+2+mu

∂xa ∂y c+2 ∂tm

) ]
43 / 26



Order-of-Accuracy Calculation

Two different approaches used here:

I Simplest approach: assume

εi = φi − Φ ≈ Ahpi

Two unknowns (A, p), requires error from two CAA runs.

I Slightly more complicated: assume

εi ≈ Ahpi + B

which has three unknowns (A, B, p) — needs three CAA runs.
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Spatial Verification: Fourier Analysis

I At a minimum, need to know scheme’s order-of-accuracy to
verify with EVA (or anything else) and the order-of-accuracy
test

I But a more detailed understanding of a scheme’s performance
helps with setting up test cases and interpreting results

I Fourier analysis for finite differencing schemes: use scheme to
differentiate a single Fourier component f (x) = e ikx , then
compare to the exact value.
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FD Schemes: Fourier Analysis Error and Conv. Rate

10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

100
ε E 2

DRP

E 6

C 6

100 101 102

2π/(k∆x)

-2
-1
0
1
2
3
4
5
6
7
8
9

p ε

46 / 26



Temporal Verification: Fourier Analysis

I Fourier analysis for time-marching schemes: use the scheme
to integrate the ODE

du

dt
= −iωu

which has the exact solution

u(t) = u0e
−iωt

where u0 = u(0).
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Temporal Schemes: Global Error and Convergence Rate
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