Shape Memory Alloy Research and Development at NASA Glenn
Current and Future Progress

Othmane Benafan– NASA Glenn
High Temperature & Smart Alloys Branch
Materials and Structures Division

Jul. 16, 2015
Shape Memory Alloys: An Introduction

- Alloys that have a “memory.” These materials have the ability to remember and recover their original shapes with load or temperature.
- SMAs exhibit a solid-to-solid, reversible phase transformation

Simplified 2D

- How?
 1. Bain strain → (lattice deformation)
 2. Lattice invariant shear → (accommodation)

Variant selection

Microstructure

- Courtesy of A. Garg
SMA actuators can generate motion in one dimension (wire form), two dimensions (bending of a bar) or even motion in a more complex three dimensions (springs, honeycombs).

Functionality: Tension (e.g., wires, springs), compression (e.g., rods, springs), bending (e.g., beams, plates), torsion (e.g., rods, tubes, and springs)
Research and Understanding of Shape Memory Alloys

1. Applied Research
2. Alloy Processing & Development
3. Testing and Modeling
4. Applications
Research and Understanding of Shape Memory Alloys

1. Applied Research
2. Alloy Processing & Development
3. Testing and Modeling
4. Applications
Development of Shape Memory Alloys: NiTi–Based HTSMAs

![NiTiHf](image)

- **NiTi**
- **Pt**
- **Hf**
- **Au**
Processing and Workability of HTSMAs

NiTiPt

Induction Melt + Homogenization

Extrusion

Multiple-Pass Extrusion
60 mil NiTi-20Pt rod

Wire Grinding
44 & 5 mil NiTiPt

Wire Drawing
5 mil NiTiPt wire
Processing and Workability of HTSMAs

NiTiHf

High temperature extrusion proved to be problematic (C. Wojcik 2008)

Successful hot rolled button (C. Wojcik 2008)

Successful hot extrusion (rods and tubes)
Research and Understanding of Shape Memory Alloys

1. Applied Research
2. Alloy Processing & Development
3. Testing and Modeling
4. Applications
Thermomechanical Testing

Uniaxial (tension/compression)

- Isothermal monotonic
- Isothermal cyclic
- Isobaric cyclic
- Isostrain cyclic

Multiaxial

- Proportional/non-proportional loading
- 3D strain measurement
- Torque/force/twist/displacement control capability

Geometries

Torsion

Hot grip testing

Durability

- New frames for durability testing are underway
 - Durability analysis of sample and components
 - Generate data for existing materials
Research and Understanding of Shape Memory Alloys

1. Applied Research
2. Alloy Processing & Development
3. Testing and Modeling
4. Applications
SMA Existing and Potential Applications

Automotive

Aerospace

Robotics

Biomedical

Space

Home goods

Energy

harvesting

Toys

Source: J. Mohd Jani et al. / Materials and Design 56 (2014) 1078–1113
Shape Memory Alloy Applications

Space

SMA Bellows
- Dynamic sealing
- Fluid handling
- Flexibility (structure alignment)

SMA Spring Tire
- Superalelastic technology
- Lunar rovers
- Terrestrial tires

SMA Docking Coupling
- Cryogenic transfer coupling
- Orbital propellant depots
- Propellant handling/protection

SMA Thermal Switch
- Thermal management
- Clean & spark-free operation
- Passive or active control

SMA rock splitters

SMA Bearings
- Corrosion resistant
- Non-galling properties
- High yield

RXN
Shape Memory Alloy Applications

Adaptive Fan Blade
- Embedded SMA actuators
- Aerodynamic efficiency
- Specific fuel consumption reduction

SMA Cellular Structures
- Airframe and engine components
- Morphing airfoils
- Light weight trusses

The Mars Atmosphere and Volatile Evolution (MAVEN) mission.
- SMA Pinpullers (From TiNi Aerospace) were used to secure and release deployables

Variable Area Nozzle
- High bypass turbofan
- SMA torque tubes provide flap rotation
- Engine noise reduction
Shape Memory Alloy Applications
Non-Aerospace Potential

Oil and Gas Industry
- SmartRAM™ actuators (LMP)
- SMA couplings (Aerofit Inc)
- Deep-water valves/shut off valves
- Self-torquing fasteners

Medical Industry
- Surgical tools
- Stents and implants
- Glasses frames

Automotive Industry
- Louvers
- Quiet actuators
- Door handle

Other Applications
- Home appliances
- Electronics
- Transportation
- Air conditioners
Development of Shape Memory Alloys: Challenges

High transformation temperatures
- Above 100 °C
- Good work output
- Thermal stability

Durability
- Loading history
- Functional fatigue
- Structural fatigue

Modeling
- Micromechanics
- Phenomenological
- Evolutions/transients

Workability/Processing
- Ductility
- Composition control
- Heat treatment
- Large scale

Dimensional stability
- Cyclic stability
- Stress-strain relationship

Design Tools
- Testing standards
- Design handbooks
- Database

Challenges in microstructures
Micromechanics
Design
Applications
SMA Team at NASA GRC

- Santo Padula II
- Ron Noebe
- Glen Bigelow
- Anita Garg
- Darrell Gaydosh
- Timothy Halsmer
- Othmane Benafan

(Branch Chiefs: Joyce Dever, Bob Carter)