Preliminary Simulations of the Ullage Dynamics in Microgravity during the Jet Mixing Portion of Tank Pressure Control Experiments

Kevin Breisacher
NASA Glenn Research Center, Cleveland, Ohio

Jeffrey Moder
NASA Glenn Research Center, Cleveland, Ohio

Joint Propulsion Conference
Orlando, Florida
July 2015
Tank Pressure Control Experiment (TPCE)
- Get-Away Special experiment flown on the Space Shuttle in 1991

Objectives

- characterize the dynamics of jet induced mixing processes in microgravity

- provide data to validate CFD models of jet mixing in microgravity

Our objective as part of the e-Cryo program is to evaluate current cryogenic fluid capabilities to support NASA efforts and to identify areas requiring further development
TPCE hardware

- clear acrylic tank for optical access
- 83% fill with Freon (r-113)
- embedded jet nozzle
- two electrical heaters
- liquid acquisition device (LAD) to recirculate fluid

- video cameras were used to record ullage interface (limited to 2 mins of heating 4 min mixing)
- temperatures and pressures in the tank were recorded
- cartesian grid placed behind the tank
The results of 38 tests were reported with jet flow rates ranging from 0.38 to 3.35 L/min. The jet Weber number used to characterize the TPCE tests was adopted from previous testing by Aydelott:\(^3\):

\[
\text{We}_j = \frac{r_1 V_o^2 R_o^2}{s D_j}
\]

where

- \(D_j\) - is the diameter of the jet at the interface
- \(R_o\) - is the radius of the liquid jet at the nozzle outlet
- \(V_o\) - is the velocity of the liquid jet at nozzle outlet
- \(r_1\) - is the density of the liquid jet
- \(s\) - is the surface tension at the interface
- \(x\) - is the distance from jet nozzle outlet to liquid/vapor interface

and

\[
D_j = 2R_o + 0.24x \quad \text{(for } x < 12.4 \text{ R}_o\text{)}
\]

\[
= 0.22R_o + 0.38x \quad \text{(for } x > 12.4 \text{ R}_o\text{)}
\]

Nonpenetrating – jet doesn’t penetrate the ullage

Asymmetric – jet forces ullage to one side of tank

Penetrating – jet penetrates and flows behind the ullage

Figure 43: Flow Pattern versus Flow Rate and We_j

Figure from
FLOW-3D

- multi-physics, multi-dimensional, transient, CFD code
- uses fractional area/volumes (FAVOR) for geometry definition (no arbitrary body fitted grid)
- volume of fluid (VOF) for fluid interfaces
- variety of surface tracking algorithms (split Lagrangian)
- 2nd order advection
- implicit surface tension
- turbulence models (k-ε used)
- 5° contact angle
- thermophysical properties for Freon r113 from NIST
95 cells in the x and y directions

135 cells in the z direction (along jet axis)

742,000 active cells

Clustered around the jet

grid details above the top heater and grid resolution of the jet (6 cells)
Run 11 \(\text{We}_j - .71 \) Non-penetrating

t= 20 s

t= 55 s

t= 90 s

t= 101 s

t= 180 s

t= 261 s
Run 15 \(W_{ej} = 4.74 \) Asymmetric

- \(t = 20 \text{ s} \)
- \(t = 25 \text{ s} \)
- \(t = 71 \text{ s} \)
- \(t = 104 \text{ s} \)
- \(t = 173 \text{ s} \)
- \(t = 203 \text{ s} \)
Run 13 \(\text{We}_j - 15.5 \) Penetrating
Run 4 – Comparison of simulation to experimental ullage protuberance.
Transit of ullage protuberance digitized from video images
Qualitatively able to capture ullage dynamics for a range of jet Weber numbers

- quantitative comparisons remain an issue (ray tracing?)

Future work

include heating portion of test

use multiblock capability to refine jet

add acceleration(s) to simulations