Ticosonde CFH at Costa Rica: A seasonal climatology of tropical UT/LS water vapor and inter-comparisons with MLS and CALIPSO

Henry B. Selkirk, GESTAR/NASA GSFC
with
Holger Vömel, Deutscher Wetterdienst
Melody Avery, NASA LaRC
Karen Rosenlof, NOAA ESRL
Sean Davis and Dale Hurst, CIRES/NOAA ESRL
Mark Schoeberl, STC
Jorge Andrés Diaz, Univ. Costa Rica
Gary Morris, St. Edwards University
Talk topics

A. Seasonal structure at Costa Rica: T, ozone and the water vapor tape recorder
B. Intercomparison to MLS v3.3 WV
C. Relationship between sonde saturation and CALIOP cloud fraction
D. Changes of WV in the tropics UT/LS
 - Comparisons of sondes to MLS at 82 hPa
 - 2-km WV time series at Costa Rica
Science drivers

A. Processes controlling stratospheric water vapor: local freeze-drying, transport from remote tropical regions, in-mixing from higher latitudes

B. Continuing differences among *in situ* water vapor instruments

C. *Jensen et al.* [2013] found differing saturation regimes for low- and hi-particle density cirrus

D. Radiative forcing of UT/LS water vapor and impact in warming climate
Talk topics

A. Seasonal structure at Costa Rica: T, ozone and the water vapor tape recorder

B. Intercomparison to MLS v3.3 WV

C. Relationship between sonde saturation and CALIOP cloud fraction

D. Changes of WV in the tropics UT/LS
 - Comparisons of sondes to MLS at 82 hPa
 - 2-km WV time series at Costa Rica
Mean Dry and Rainy Season Profiles
2005-2013
Frostpoint temperature, ambient temperature, and ozone

DJF

T_{fp} \quad T \quad O_3

CPT at base of profile minimum
T_{fp}/water vapor
Ozone gradient change nearly coincident with mean coldpoint
Prominent inflection in O_3 profile @ 20 km

JJA

T_{fp} \quad T \quad O_3

CPT overlain by decreasing T_{fp}/WV
Ozone gradient change well below mean coldpoint
Smooth ozone profile throughout
Tape recorder - I

Second half of year – JJA and SON

- 4 ppmv “hygropause” clearly visible at 468 K in JJA
- 5.5 ppmv maximum rises out of TTL in SON to 415 K
Tape recorder - II
First half of year – DJF and MAM

- Profile minimum near trop in DJF and slow movement upward through MAM
- But SON max near 420 K has moved up to 460 K by DJF and 525 K in MAM
- Weak ascent in LMS during DJF and MAM, but more rapid above 450 K

WV_{\text{min}}: 2.7 \text{ ppmv}
402 \text{ K}
Talk topics

A. Seasonal structure at Costa Rica: T, ozone and the water vapor tape recorder
B. Intercomparison to MLS v3.3 WV
C. Relationship between sonde saturation and CALIOP cloud fraction
D. Changes of WV in the tropics UT/LS
 - Comparisons of sondes to MLS at 82 hPa
 - 2-km WV time series at Costa Rica
Coincidences with MLS v3.3
±3 hours, Δ ≤ 600 km

December – February
65 coincident soundings:
Costa Rica (35), Biak (19), Kototabang (4), Tarawa (4)

June – September
28 coincident soundings:
Costa Rica (22), San Cristobál (6)
Talk topics

A. Seasonal structure at Costa Rica: T, ozone and the water vapor tape recorder
B. Intercomparison to MLS v3.3 WV
C. Relationship between sonde saturation and CALIOP cloud fraction
D. Changes of WV in the tropics UT/LS
 • Comparisons of sondes to MLS at 82 hPa
 • 2-km WV time series at Costa Rica
RH_{ice}: DJF vs. JJA
CALIOP Vertical Feature Mask comparison
15 July 2005

VFM cloud analyzed at San José 10.5 to 14.5 km

CFH saturation layer 11.4 to 15 km

- 28 VFM/CFH coincidences closer than 400 km, 2006-2011
- Preliminary finding is that CALIOP is capturing most of the layers > 1 km deep
- However, VFM is just first step – ultimate goal is to compare to ice water content
CALIOP Mean Cloud Fraction at San Jose, Costa Rica

Peak frequencies of sonde saturation
Talk topics

A. Seasonal structure at Costa Rica: T, ozone and the water vapor tape recorder
B. Intercomparison to MLS v3.3 WV
C. Relationship between sonde saturation and CALIOP cloud fraction

D. Changes of WV in the tropics UT/LS
 • Comparisons of sondes to MLS at 82 hPa
 • 2-km WV time series at Costa Rica
Lower stratospheric water vapor
MLS, frostpoint sondes and tropical CPT

Adapted from Fig. 2.43, BAMS 2014: State of the Climate 2013
Time series calculations

- Costa Rica CFH observations, July 2005 – July 2013
- Monthly time series of 2-km thick layers
 - Linear average of 40 values at 50-m grid points
 - Centered at 3, 5, 7..... km
 - Layer average points computed only if 30 or more grid levels present
- Multiple soundings in a month composited to a single value
- Monthly time means at each 1-km level derived for 8-year period
 - Minimum sample size of 4 for each monthly level time mean
 - Exclude levels with 6 or more monthly time means missing
 - However, did allow interpolation of up to 2 consecutive missing months
 - Highest level meeting this criterion was 21 km
- De-seasonalized anomaly time series generated
 - Subtract long-term means for the month from each value at all levels meeting above criteria
- Did linear fits in IGOR Pro to anomaly time series to check for trends
Layer-average WV time series and de-seasonalized anomalies
Layer-average WV time series and de-seasonalized anomalies

Graph showing time series data with trend lines and labels for coefficients.

Title: Layer-average WV time series and de-seasonalized anomalies.

Graphs with data points and trend lines for different layers.

Legend: Coefficients for trend lines.

Graph labels and axes indicated.

Summary

- Tape recorder structure at Costa Rica consistent with zonal mean, including slow uplift in early part of year in lowermost stratosphere
- Intercomparing MLS and CFH:
 - No real change from Vömel et al. [2007]: MLS drier than CFH in UT, wetter in LMS
 - Caveats: UT result swamped by large scatter; difference in LMS within instrumental uncertainties
- Seasonal mean CALIOP cloud fractions consistent with pattern of saturated sondes
 - Preliminary comparisons with coincident CALIOP feature mask data indicate that it can see most saturated sonde layers deeper than about 1 km are
 - However, addressing low- vs. high-density cirrus question will require information on ice water content
- Changes of WV in the tropics UT/LS:
 - Ticosonde CFH following tropical CPT values
 - Weak upward trends over nine years of program not significant – which is not unexpected given dominance of interannual variability