Software Graphics Processing Unit (sGPU) for Deep Space Applications

PROJECT MANAGEMENT Mary McCabe 281.483.5720 or mary.e.mccabe@nasa.gov
George Salazar 281.483.0162 or george.a.salazar@nasa.gov

HAT: 4.5.a, 4.7.c, 6.3.b TA: 04 Onboard Computing; 06 EVA, Environmental Monitoring TRL: start 2 / current 5

OVERVIEW
A graphics processing capability will be required for deep space missions and must include a range of applications, from safety-critical vehicle health status to telemedicine for crew health. However, preliminary radiation testing of commercial graphics processing cards suggest they cannot operate in the deep space radiation environment. Investigation into an sGPU comprised of commercial-equivalent radiation hardened/tolerant single board computers, field programmable gate arrays, and safety critical display software shows promising results. Preliminary performance of approximately 30 frames per second (FPS) has been achieved. Use of multi-core processors may provide a significant increase in performance.

INNOVATION
This technology would provide graphics processing capability for the deep space environment.

OUTCOME
To date, approximate performance of 30 FPS has been achieved.

INFUSION SPACE
This technology can be used for both safety-critical and non-critical applications.

FUTURE WORK
Explore a customizable multi-core architecture.
- Investigate and procure a multi-core processor with a path to a High Performance Space Computer (HPSC).
 - CHREC Space Processor (CSP)
- Utilize open source graphics software to keep display graphics development cost low.
- Design an FPGA architecture for a multi-core implementation.
- Test using various graphical display types.
- Explore use as image processor.