Electric Sail Propulsion for Exploring Nearby Interstellar Space

Les Johnson
Bruce M. Wiegmann
Mike Bangham
We tend to think of space as being big and empty…
Can we use the environments of space to our advantage?
Electric Sail – Concept of Operations

- The e-sail consists of 10 to 100 conducting, positively charged, bare wires, each 1–50 km in length.
- Wires are deployed from the main spacecraft bus and the spacecraft rotates to keep wires taut.
- An electron gun is used to keep the spacecraft and wires in a high positive potential.
- Positive ions in the solar wind are repulsed by the field and thrust is generated.
Electric Sail – By The Numbers
An Example

- 10 – 100 wires
- 20 km long
- 25 microns thick
- Wires kept at 20 kV potential
- The electric field surrounding each wire extends ~ 10 meters into the surrounding plasma.
- \(\sim 1 \text{ mm/s}^2 \) acceleration
The electric solar wind sail, or electric sail for short, is a propulsion invention made in 2006 at the Kumpula Space Centre by Dr. Pekka Janhunen.

Image courtesy of Dr. Pekka Janhunen
Why An Electric Sail?

• Has the potential to fly payloads out of the ecliptic and into non-Keplerian orbits, place payloads in a retrograde solar orbit, flyby missions to terrestrial planets and asteroids, and position instruments for off-Lagrange point space weather observation.

• Low mass/ low cost propulsion system.

• Electric sail thrust extends deep into the solar system (further than a solar sail).

• Propulsion system is scalable to small spacecraft

• Readily meets the requirements for relatively near-term interstellar precursor missions out to 500 AU
What Comes After Voyager?

• **Voyager:**
 - Took 36 years to reach the Interstellar Medium (ISM).
 - Escape Velocity (V^∞) is 3.6 AU/yr.
 - Used gravity assists: Jupiter, Saturn, Uranus and Neptune.
 - Is 38 years old and going.

• **Interstellar Probe:**
 - Get there sooner: 100+ AU in 10 years.
 - Travel faster: 5x – 10x Voyager speed.
 - Survive longer: 50 – 100 years.
Interstellar Probe In-Space Propulsion Options

- High-thrust propulsion option (All chem)
 - 1 to 2 solid rocket motors (SRM) in SLS stack
- Low-thrust propulsion options:
 - MaSMi Hall thruster
 - 50,000 hr. life
 - Solar sail
 - @ 10 g/m²; Characteristic Acceleration = 0.43 mm/sec²
 - @ 3 g/m²; Characteristic Acceleration = 0.66 mm/sec²
 - Electric sail
 - Characteristic Acceleration = 2 mm/sec²
 - Characteristic Acceleration = 1 mm/sec²

SLS Block 1B with EUS and 8.4m PLF

MaSMi Hall thruster
Solar sail
Electric sail
SLS Block 1B with EUS and 8.4m PLF
• E-sail velocities are 25% greater than solar sail option because of the rate of acceleration decline \(\frac{1}{r^{7/6}}\) vs solar sail acceleration decline \(\frac{1}{r^2}\)

• E-Sail and Solar Sail propulsion options exceed the 2012 Heliophysics Decadal Survey speed goal of 3.8 AU/yr
MSFC conducted a 2-month TRL assessment of E-Sail systems and components.

Most components are at relatively high TRL, but three elements significantly reduce the system-level TRL:

- Uncertainty of plasma physics model (used to determine current collection, hence, thrust)
- Wire deployment
- Guidance, Navigation and Control
• Competing models exist for understanding the physics of long-thin charged wires in the solar wind
 • Langmuir-Mott Smith (LMS)
 • Orbit Motion Limited (OML)
• Models predict 10X different electron current collection, hence onboard power system requirements.
• Measurements in MSFC Space Environmental Effects test chambers will determine which model is correct and allow system sizing.
E-Sail Wire Deployment

- Deploying and maintaining stable, multi-km wires in deep space is complicated.
- Spin deployment requires unobtainable spacecraft rotational velocity for long tethers but may be practical for large number of short tethers.
- Propulsive deployment may be mass prohibitive.
- Electrodynamic deployment via solar wind interaction appears to be too slow, but doable.
- MSFC is exploring these and other options in more detail to determine the ‘best’ approach.
E-Sail Guidance, Navigation and Control

- Reflecting the solar wind for thrust and selectively reflecting it for attitude control and navigation is a complex challenge.
- Large rotational inertia must be managed to produce desired headings / vehicle direction.
- Variable tether voltage biasing will be modeled and control strategies explored to determine viable GN&C approaches.

Image courtesy of Dr. Pekka Janhunen
We have a plan.
The Necessary Next Steps to a Heliopause Mission in 2025

2014 Phase I NIAC
2015 Phase II NIAC
• Develop enhanced numerical modeling
• Perform ground tests to benchmark enhanced numerical codes
• Prototype tether & tether deployers

Multi tether E-Sail propulsion system demonstration flight (outside of Earth’s Mag Field)

Incorporate design changes req’d from demo flight for build up of Deep Space flight hardware

Fabricate hardware for Heliophysics Mission (notional 2025 launch)