Evaluation of Primary Dendrite Arm Spacings from Aluminum-7wt% Silicon alloys Directionally Solidified aboard the International Space Station – Comparison with Theory

Samuel Angart¹, Mark Lauer¹, David Poirier¹, Surendra Tewari², Ravi Rajamure³, Richard Grugel⁴

¹ Department of Materials Science and Engineering, The University of Arizona; 1235 E. James E. Rogers Way Room 141, Tucson, AZ 85719
² Department of Chemical and Biological Engineering, Cleveland State University; 2121 Euclid Ave., FH 104, Cleveland, OH 44115
³ Department of Materials Science and Engineering, North Texas University; 1155 Union Circle #305310 Denton, TX 76203-5017 USA
⁴ NASA Marshall Space Flight Center; MS-EM31, Huntsville, AL 35812

Aluminum – 7wt% silicon alloys were directionally solidified in the microgravity environment aboard the International Space Station as part of the “Microstructure Formation in CASTing of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions” (MICAST) European led program. Cross-sections of the sample during periods of steady-state growth were metallographically prepared from which the primary dendrite arm spacing (λ_1) was measured. These spacings were found to be in reasonable agreement with the Hunt-Lu model which assumes a diffusion-controlled, convectionless, environment during controlled solidification. Deviation from the model was found and is attributed to gravity-independent thermocapillary convection where, over short distances, the liquid appears to have separated from the crucible wall.