
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release;  

distribution is unlimited. 1  

Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition 
GT2015 

June 15 – 19, 2015, Montréal, Canada 

 

GT2015-43744 

SENSOR SELECTION FOR AIRCRAFT ENGINE 
PERFORMANCE ESTIMATION AND GAS PATH FAULT DIAGNOSTICS 

 

Donald L. Simon 
NASA Glenn Research Center 

21000 Brookpark Road 
Cleveland, OH, 44135 

 

 

ABSTRACT 
This paper presents analytical techniques for aiding system 

designers in making aircraft engine health management sensor 

selection decisions. The presented techniques, which are based 

on linear estimation and probability theory, are tailored for gas 

turbine engine performance estimation and gas path fault 

diagnostics applications. They enable quantification of the 

performance estimation and diagnostic accuracy offered by 

different candidate sensor suites. For performance estimation, 

sensor selection metrics are presented for two types of 

estimators including a Kalman filter and a maximum a 

posteriori estimator. For each type of performance estimator, 

sensor selection is based on minimizing the theoretical sum of 

squared estimation errors in health parameters representing 

performance deterioration in the major rotating modules of the 

engine. For gas path fault diagnostics, the sensor selection 

metric is set up to maximize correct classification rate for a 

diagnostic strategy that performs fault classification by 

identifying the fault type that most closely matches the 

observed measurement signature in a weighted least squares 

sense. Results from the application of the sensor selection 

metrics to a linear engine model are presented and discussed. 

Given a baseline sensor suite and a candidate list of optional 

sensors, an exhaustive search is performed to determine the 

optimal sensor suites for performance estimation and fault 

diagnostics. For any given sensor suite, Monte Carlo simulation 

results are found to exhibit good agreement with theoretical 

predictions of estimation and diagnostic accuracies. 

 

INTRODUCTION 
Aircraft operators rely on engine performance estimation 

and gas path fault diagnostics to ensure the safe and efficient 

operation of their gas turbine engine assets. Performance 

estimation enables the estimation and trending of gradual 

performance deterioration that the engine will experience over 

time due to fouling, corrosion, and erosion of turbomachinery 

components. Gas path fault diagnostics enables the detection 

and isolation of gas path system faults affecting engine 

performance, which are typically relatively rapid or abrupt in 

nature [1,2]. A notional illustration of the observed 

measurement shifts caused by gradual deterioration compared 

to an abrupt fault is shown in Figure 1.  
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Figure 1. Gradual versus rapid performance shifts. 

 

Although performance estimation and gas path fault 

diagnostics typically apply different algorithmic approaches, 

both are conducted using the same engine sensor measurement 

data—primarily data acquired from the available engine control 

sensor suite. In general, adding additional engine sensors will 

improve performance estimation and diagnostic accuracy, but 

this does add to the overall engine life cycle cost. Therefore, the 

decision to add sensors should be made judiciously.  

Several researchers have presented sensor selection 

approaches for engine health management applications. 

Mushini and Simon (no relation to the author) proposed a 

sensor selection approach for Kalman filter-based performance 

estimation applications [3]. In this work, a performance metric 
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was defined as a function of the steady state error covariance 

and the cost of the selected sensors. Three separate metrics 

were considered for searching for the optimal sensor suite, 

including a random search, a genetic algorithm search, and an 

exhaustive search. The study by Mushini and Simon assumed 

that the estimation problem was over-determined (i.e., there are 

more sensors than unknown parameters to be estimated), which 

is usually not the case for engine performance estimation 

applications. Borguet and Léonard approached the problem of 

sensor selection for engine performance estimation within the 

scope of linear information theory [4]. They defined 

performance metrics based on the Fisher information matrix, 

and an exhaustive search was conducted to identify the best 

sensor suite. Sowers et al. introduced a systematic framework 

for automating sensor selection decisions for diagnostic 

applications. This framework enables incorporation of factors 

of merit commonly considered in the sensor selection process 

including diagnostic accuracy, diagnostic criticality, and cost 

[5]. The framework relies on the end user to specify the merit 

function used by the optimal search algorithm. Kamboukos et 

al. proposed sensor selection for performance estimation 

applications based on the condition number of the influence 

matrix that relates changes in health parameters to changes in 

sensed measurements [6]. Here, a determined health parameter 

estimation problem was considered where there are as many 

sensors as parameters to be estimated.  

The contribution of this paper will be to introduce separate 

sensor selection metrics for performance estimation and fault 

diagnostic applications. In terms of performance estimation, the 

problem is assumed to be underdetermined (i.e., fewer sensors 

than unknown health parameters to be estimated), and two 

separate estimators will be considered—one applying a Kalman 

filter designed for processing dynamic sensed measurement 

information, and a second applying a maximum a posteriori 

estimator for processing quasi-steady-state measurement data. 

In terms of fault diagnostics, a single fault diagnostic strategy 

applying a weighted least squares hypothesis test will be 

considered.  

The remainder of this paper is organized as follows. First, 

metrics are defined through analytical derivations of the 

performance estimation accuracy and gas path fault diagnostic 

accuracy based on linear system theory. These analytical 

functions can be directly used to theoretically predict the 

estimation or diagnostic accuracy offered by a given sensor 

suite. Next, example application of the sensor selection 

techniques is presented by applying the approaches to a linear 

engine model. Theoretically predicted results are calculated and 

compared against empirical results obtained through Monte 

Carlo simulation analysis. This is followed by discussions and 

conclusions.  

NOMENCLATURE 
A, Axh, Axq, B, 

Bxh, Bxq, C, Cxh, 

Cxq, D, L, M 

system matrices 

CCR correct classification rate 

C-MAPSS40k Commercial Modular Aero-Propulsion System 

Simulation 40k 

DM Mahalanobis distance 

FPR false positive rate 

H influence coefficient matrix relating changes in 

health parameters to changes in sensed 

measurements 

Hf fault influence coefficient matrix relating faults to 

changes in sensed measurements 

I identity matrix 

MAP maximum a posteriori 

N number of fault types 

PMC probability of misclassification 

Ph health parameter covariance matrix 

R measurement noise covariance matrix 

SSEE sum of squared estimation errors 

T fault detection threshold 

TPR true positive rate 

V* transformation matrix relating h to q 

WSSE weighted sum of squared errors 

WSSM weighted sum of squared measurements 

h health parameter vector 

f fault vector 

k number of additional sensors to add 

m number of tuning parameters 

n Number of additional sensors to choose from 

p number of health parameters 

q reduced order tuning parameter vector 

u actuator command vector 

v measurement noise vector 

wk, wh,k, wxh,k process noise vectors 

x state vector 

y measurement vector 

 gamma function 

 lower incomplete gamma function 

ε residual vector (estimate minus its expected value)  

 standard normal distribution function 

λ mean value of the WSSM signal 

μi mean value of ith sensed measurement 

  

Subscripts  

a fault type index 

b misclassified fault type index 

k sample index 

xh augmented state vector (x and h) 

xq reduced order state vector (x and q) 

  

Superscripts  

† pseudo-inverse 

^ estimated value 

~ error value 

– mean value 

  

Operators  

E[•] expected value of argument 

tr{•} trace of a matrix 

SENSOR SELECTION METRICS 
As previously mentioned, aircraft engine performance 

estimation and gas path fault diagnostics pose different problem 

formulations. Analytical formulations of each are introduced 
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below along with derivations of performance estimation and 

diagnostic accuracy for a given sensor suite. The performance 

estimation problem assumes the application of two separate 

estimators—a linear Kalman filter and a maximum a posteriori 

estimator, while the gas path fault diagnostic problem assumes 

the application of a single fault isolator applying a weighted 

least squares hypothesis test.  

 

Kalman Filter-Based Health Parameter Estimation 
In the aircraft engine community, Kalman filters are 

commonly applied for on-board performance estimation or 

post-flight analysis of full-flight streaming measurement data. 

In this subsection, Kalman filter health parameter estimation 

accuracy is discussed following a derivation previously 

introduced by Simon and Garg as part of an optimal tuner 

selection methodology for Kalman filter-based performance 

estimation applications [7]. This optimal tuner selection 

methodology is designed to minimize the Kalman mean 

squared estimation error in the parameters of interest when 

facing underdetermined estimation problems, but can readily be 

extended to also calculate the mean squared estimation error 

offered by different sensor suites, as was shown in Ref. [8].   

The formulation begins by considering the following 

discrete linear time-invariant state space equations representing 

engine dynamics about an operating point 
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 (1) 

 

where k is the sample index, x is the vector of state variables, u 

is the vector of control inputs, and y is the vector of measured 

outputs. The vector h, where h p, represents the engine 

health parameters, which induce shifts in other variables as the 

health parameters deviate from their nominal values. The Δ 

symbols denote parameter deviations relative to the linear 

operating point trim condition. The vectors w and v are 

uncorrelated zero-mean white noise input sequences. The 

matrices A, B, C, D, L, and M are of appropriate dimensions. 

Through algebraic manipulation, Eq. (1) can be re-written such 

that h is concatenated with x to form an augmented state vector, 

xxh, as shown in Eq. (2). Since engine performance deterioration 

is very slowly evolving relative to other engine dynamics, h is 

here modeled without dynamics. Here, and throughout the 

remainder of this section, the  symbols are omitted for 

simplicity.  
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The vector wxh is zero-mean white noise associated with the 

augmented state vector, [xT hT]T. wxh consists of the original 

state process noise, w, concatenated with the process noise 

associated with the health parameter vector, wh. 

Once the h vector is appended to the state vector as shown 

in Eq. (2), it may be directly estimated by applying a Kalman 

filter as long as the system is observable. However, the number 

of health parameters that can be estimated is limited to the 

number of sensors, the dimension of y [9], and typically an 

aircraft gas turbine engine has fewer sensors than health 

parameters. To enable Kalman filter formulation for an 

underdetermined estimation problem, a reduced-order state 

space model is constructed. This is accomplished by defining a 

model tuning parameter vector, q, which is a linear combination 

of all health parameters, h, given by 

 

hVq *   (3) 

 

where q m, h p, m < p, and V* is an m  p 

transformation matrix of rank m, which relates h to q. Given an 

estimate of q (i.e., q̂ ), an approximation of the health 

parameter vector, ĥ , can be obtained as 

 

qVh ˆˆ *†  (4) 

 

where V*† is the pseudo-inverse of V*.  Substituting Eq. (4) into 

Eq. (2) yields the following reduced-order state space 

equations, which may be used to formulate a Kalman filter 
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(5) 

 

 

The reduced-order equations introduced in Eq. (5) will 

enable a Kalman filter to be formulated that can estimate the 

augmented state vector, [xT qT]T. The resulting Kalman filter-

produced tuner parameter vector estimate, q̂ , can be inserted 

into Eq. (4) to produce an estimated health parameter vector, ĥ . 

However, this does not circumvent the underdetermined nature 

of the ĥ  estimation problem, and the fact that the produced ĥ  

estimates will contain errors is unavoidable. However, 

estimation accuracy is directly dependent on the available 

sensor suite and the selection of the transformation matrix, V*. 

This gives rise to an optimization problem of selecting the best 

sensor suite and the corresponding V* that minimizes the 

estimation error in the parameters of interest. For a given sensor 

suite, an optimal iterative search can be conducted to select a V* 

matrix that minimizes the theoretical mean sum of squared 

estimation errors (SSEE) in the parameters of interest 

 

 
pmV

VSSEE
*

*minarg  (6) 

 

where the above statement indicates the V* matrix that 

minimizes the SSEE function. Once V* is obtained, it can be 

inserted into Eq. (5) to construct the reduced-order state space 

equations. Here, it is important to emphasize that the V* matrix 

and q vector are unique to each sensor suite considered. 

Therefore, Eq. (6) is individually applied to each sensor suite, 

and the suite that provides the lowest SSEE is identified as 

optimal. 

Due to page limitations, a complete derivation of the 

Kalman filter SSEE metric is not provided in this document. 

However, readers are referred to Ref. [7] for this derivation. 

Some notable aspects regarding the derivation are that it 

focuses on linear Kalman filter estimation accuracy under 

steady-state operating conditions, and that the error of each 

estimated parameter comprises mean squared bias and variance 

terms. Additionally, the derivation incorporates user-specified a 

priori knowledge regarding the health parameter covariance 

matrix reflecting the expected distribution in the health 

parameters to be estimated. While this paper will only consider 

Kalman filter health parameter estimation accuracy, the 

technique can be readily extended to optimize the estimation 

accuracy of any unmeasured performance parameters such as 

thrust, airflows, or metal temperatures.  

 

Maximum A Posteriori Health Parameter Estimation 
Maximum a posteriori (MAP) estimation is commonly 

applied for ground-based aircraft engine gas path analysis. It is 

based on quasi-steady-state engine snapshot measurements 

acquired in flight [2,10]. Unlike the Kalman filter, which is a 

recursive estimator designed to process dynamic measurement 

data, the MAP estimator provides a point estimate based on an 

assumed quasi-steady-state measurement process. The MAP 

estimator incorporates a priori knowledge regarding the 

distribution of the parameters to be estimated, which enables it 

to provide an estimate when facing underdetermined estimation 

problems. To introduce the MAP estimator, consider the 

following linear steady-state measurement process 

 

vhHy   (7) 

 
where H is an influence coefficient matrix that relates the 

effects of the health parameter vector changes, Δh, to changes 

(i.e., residuals) in the sensed measurement vector, Δy. Here, v, 

is zero-mean white noise with covariance R. As with the 

previously introduced Kalman filter equations, the Δ symbols 

denote parameter deviations relative to the operating point trim 

condition at which Eq. (7) was generated. For simplicity, the Δ 

symbols are omitted throughout the remainder of this section on 

the MAP estimator and the terms y and h are used to indicate 

measurement and health parameter changes, respectively. The 

maximum a posteriori (MAP) estimator follows the closed 

form expression 
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where Ph is a matrix containing a priori knowledge of the 

expected health parameter covariance. As with the Kalman 

filter introduced above, the MAP estimator produces a biased 

estimate due to the underdetermined nature of the estimation 

problem. However, its accuracy depends on the available sensor 

suite, thus giving rise to a sensor selection problem. As with the 

Kalman filter, the MAP health parameter estimation error will 

be defined in terms of the sum of squared estimation errors 

(SSEE), which consists of the sum of two components: mean 

squared bias and variance, as defined below. 

 

MAP Estimation Mean Squared Bias. The bias of an 

estimator is the expected difference between the estimator’s 

estimated value and the true value of the parameter being 

estimated. For the MAP estimator, the estimated health 

parameter bias vector, h
~

, is defined as 
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where the operator E[●] represents the expected value of the 

argument, and the expected value properties E[h]=h and E[v]=0 

are leveraged in Eq. (9). The estimation error bias equation 

given in Eq. (9) is a function of an arbitrary health parameter 

vector h. The mean sum of squared biases across a fleet of 

engines is given as  
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where tr{●} represents the trace (sum of the diagonal elements) 

of the matrix. Here, the E[hhT] reduces to the health parameter 

covariance matrix, Ph, which is leveraged in Eq. (10). 

 

MAP Estimation Variance. The variance of the MAP 

estimate is found by constructing the estimation covariance 

matrix,
h

Pˆ , which is defined as 
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where the vector ε is the residual between ĥ  and its expected 

value. By combining Eq. (7) and Eq. (8), ε can be written as 
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Then, by substituting Eq. (12) into Eq. (11) the covariance 

matrix of the MAP estimate becomes 
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Diagonal elements of 
h

Pˆ  will reflect the variance of individual 

health parameter estimates, while off diagonal elements reflect 

the covariance between estimates.  

The overall sum of squared estimation errors (SSEE) can 

be obtained by combining the estimation mean squared bias and 

variance information as  
 

        T

hh

T

hhh RGGtrIHGPIHGtrhSSEE ˆ  (14) 

 
Mean squared bias and variance are equally weighted in the 

above equation. However, end users may weight them 

differently if they so choose. 

 

Weighted Least Squares Single Fault Diagnostic 
Approach 

Gas path fault diagnostics poses a different problem than 

that of performance estimation. Unlike performance 

deterioration, which is assumed to occur gradually and affect all 

health parameters simultaneously and somewhat independently, 

gas path faults are assumed to primarily occur abruptly and in 

isolation. In other words, it is rare to have multiple unrelated 

gas path system faults occurring simultaneously. Applying the 

single fault assumption transforms gas path fault diagnostics 

from an underdetermined to an overdetermined estimation 

problem. This subsection will present a single fault isolator that 

applies a weighted least squares hypothesis test to diagnose 

faults. Additionally, the accuracy offered by this diagnostic 

approach is analytically derived. 

The fault diagnostic approach considered in this study, like 

the previously described MAP estimation approach, is ground-

based, and designed to process snapshot engine measurements 

acquired in flight. To introduce the diagnostic approach, first 

assume the following linear steady-state sensor measurement 

process  

 

vfHy f   (15) 

 

where ΔΔy is a vector of residuals reflecting recent shifts in 

engine sensor measurements, for example, the change 

measurements have undergone within the past one or two 

flights. Also shown in Eq. (15) is f, a vector of gas path fault 

magnitudes, and Hf, a fault influence coefficient matrix relating 

fault magnitudes to sensor measurement residuals. 

Furthermore, v denotes zero-mean normally distributed sensor 
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measurement noise of covariance R. The measurement 

residuals, ΔΔy, are regularly updated as new snapshot data 

become available. They are referred to as “delta-delta” 

measurement shifts, as they will reflect fault induced shifts 

relative to the gradual deterioration induced shifts the engine 

has experienced up until the time of fault initiation [2]. Since 

faults are assumed to occur abruptly and cause relatively large 

measurement shifts, the ΔΔy residuals will be small in the case 

of no fault, and larger once a fault has occurred (See Fig. 1). 

For simplicity, the ΔΔ symbols are omitted throughout the 

remainder of this section and the term y is used to indicate 

recent observed shifts in the sensor measurements. Given Eq. 

(15), a fault detection and classification (isolation) approach 

can be formulated. Here, it is assumed that fault detection is 

performed by calculating and monitoring a weighted sum of 

squared measurement (WSSM) signal: 

 

yRyWSSM T 1  (16) 

 

If the WSSM signal exceeds an established detection threshold 

(T), a fault is assumed to be present and the diagnostic logic 

proceeds in attempting to isolate the most plausible single fault 

root cause for the fault. Here, fault classification is performed 

by applying a weighted least squares approach. Each possible 

gas path fault type is evaluated individually, and the 

hypothesized fault whose signature best matches the observed 

measurement residuals in a weighted least squares sense is 

classified as the fault. For the lth fault type, the estimated fault 

magnitude is calculated as 

 

  yRHHRHf T

lflf

T

lfl

1

,

1

,

1

,
ˆ   (17) 

 

where Hf,l is the column of the Hf matrix corresponding to the lth 

fault type, and the scalar lf̂  is the estimated magnitude of the lth 

fault type that produces the best match of the observed vector 

of sensor measurement residuals, y , in a weighted least 

squares sense. The resulting lf̂  estimate is then combined with 

Hf,l to produce an estimated measurement residual vector, lŷ , 

for the lth fault type: 

 

fHy lfl
ˆˆ

,  (18) 

 

The difference between lŷ  and y defines the estimation error 

vector for the lth fault type, ly~ , defined as 

 

yyy ll  ˆ~  (19) 

 

The weighted sum of squared errors for the lth hypothesized 

fault type is calculated as 

 

l

T

ll yRyWSSE ~~ 1  (20) 

After WSSE’s are calculated for each potential fault type 

they are compared, and the hypothesized fault type that 

produces the minimum WSSE is classified as the fault cause. 

Theoretical predictions of fault detection and fault classification 

performance for the single fault isolator are given below. 

 
Fault Detection Performance. For any diagnostic 

system, fault detection performance is directly related to the 

applied fault detection threshold. Larger thresholds will result 

in fewer false alarms in the absence of a fault (false positives), 

but will also result in fewer true detections when a fault is 

actually present (true positives), while the opposite is true for 

smaller thresholds. In order to facilitate a common basis of 

comparison, each sensor suite considered in this study applies a 

WSSM fault detection threshold, T, necessary to achieve a user-

specified target false positive rate (FPR). The FPR of a system 

monitoring a WSSM signal for fault detection purposes can be 

approximated if it is assumed that all sensed measurements are 

independent in addition to being zero mean and normally 

distributed. With this simplification, the distribution of the 

WSSM signal under the no-fault case will be the sum of the 

squares of k independent standard normal random variables, 

which is a chi square distribution with k degrees of freedom. 

The cumulative distribution function of a chi square 

distribution is given as [11] 
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where (·)  is the gamma function and (·) is the lower 

incomplete gamma function. The above equation reflects the 

probability that a random sample of the WSSM signal is less 

than the threshold, T, when no fault is present (i.e., the true 

negative rate). Therefore, the false positive rate is given as  
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 When a fault occurs, the WSSM signal will be distributed 

as a non-central chi-squared distribution. This distribution will 

be a function of: 1) the detection threshold, T; 2) the number of 

sensors, k; and 3) the mean value of the WSSM signal. The 

mean value of the WSSM signal for a fault of given type and 

magnitude is defined as λ, where 


k

i
i

1

2 , where μi is the 

mean value of the ith sensor in the presence of the fault. Given 

this information, the true positive rate (TPR) can be calculated 
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from the cumulative distribution function of the non-central 

chi-square distribution as [11]: 
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The above equation reflects the probability that a random 

sample of the WSSM signal is greater than the threshold, T, 

when a fault of magnitude λ is present. Given Eqs. (22) and 

(23), overall FPR and TPR for individual fault types can be 

approximated for any given sensor suite.  

 

Fault Classification Performance. In this study an 

approximation of the theoretical misclassification rate is 

produced by considering the probability of misclassification 

between fault pair combinations (i.e., making the assumption 

that only two fault classes exist) given that a fault has been 

correctly detected. The two-class misclassification rate results 

across all fault pairs are then summed to estimate an overall 

misclassification rate. Calculating the two-class 

misclassification rate is readily tractable compared to multi-

class misclassification rate given three or more faults. While 

this simplification does not enable an exact calculation of the 

overall misclassification rate for a given fault type, it is 

effective for identifying fault pairs at high risk of 

misclassification. Let us consider a fault of a given type, a, and 

magnitude, fa. From Eq. (15), the expected sensed measurement 

vector under this condition becomes aafa fHy , . The 

probability that a sensor measurement vector observation, y, 

collected when fault fa is present is misclassified as fault type b 

(assumed to be of equivalent probability and resulting in 

equivalent sensor measurement covariance as fault type a) is 

given as [12] 
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where PMCb|a is the probability of misclassifying fault type a 

as b,  is the standard normal distribution function, and DM is 

the Mahalanobis distance defined as 
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The above expression accounts for the fact that the least 

squares estimation approach is able to produce bi-directional 

fault estimates of either a positive or negative magnitude. The 

sign that produces the minimum distance will have the largest 

contribution to the misclassification rate. In Eq. (25), yb is the 

expected sensor measurement vector for fault type b, scaled to 

be the same weighted length as yb as shown in Eq. (26) 
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The above equations allow the probability of misclassification 

PMCb|a for each fault pair to be calculated. The overall 

probability of misclassification for fault type a can be 

approximated by summing all fault pair combinations: 
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(27) 

 

where N is the number of different fault types. Once PMCa is 

obtained, an approximation of the correct classification rate 

(CCR) for fault type a of the considered fault magnitude can be 

found by combining the fault’s TPR (given by Eq. (23)) and its 

PMC (given by Eq. (27)) as 

 

 aaa PMCTPRCCR  1  (28) 

 

The average CCR for the diagnostic system considering all fault 

types thus becomes 
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 (29) 

 

where CCRa is the correct classification rate for the ath fault 

type, and N is the total number of fault types. The CCR shown 

in Eq. (29) serves as a metric that can be used to estimate and 

compare the diagnostic performance offered by different 

candidate sensor suites.   

LINEAR TURBOFAN ENGINE MODEL EXAMPLE 
In this section, an example application of the previously 

introduced metrics is given. This is done by applying the 

metrics to a linear point model and linear influence coefficient 

matrices extracted from the NASA Commercial Modular Aero-

Propulsion System Simulation 40k (C-MAPSS40k) turbofan 

engine simulation [13] at  standard day sea level static 

conditions (i.e., air temperature = 59F, altitude = 0, and Mach = 

0) and an intermediate power setting. The linear model, which 

is used for Kalman filter estimation, and is of the format shown 

in Eq. (1), has seven state variables and three control inputs 

(actuator commands), as shown in Table 1, and ten health 

parameters, as shown in Table 2. The linear model has six 

baseline sensors, and four additional (optional) sensors, which 

are shown in Table 3 along with their corresponding standard 

deviations. Here, the sensor noise is assumed to be 

uncorrelated, zero-mean and normally distributed. The linear 

influence coefficient matrix to be used in MAP estimation (i.e., 

the H matrix given in Eq. (7)), and the linear fault influence 
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coefficient matrix to be used in gas path fault diagnostics (i.e., 

the Hf matrix given in Eq. (15)), are generated from 

C-MAPSS40k at the same operating point as the linear model. 

However, these matrices are generated assuming that fan speed 

is held constant. As such, fan speed (Nf) is replaced by fuel 

flow (Wf) as one of the six baseline sensors when performing 

MAP estimation or gas path fault diagnostics.  

 The optional sensors shown in Table 3 are evaluated for the 

estimation accuracy or diagnostic improvement they provide if 

added individually or in combination to the baseline sensor 

suite. Given a set of n additional sensors to choose from, and a 

target number, k, of additional sensors, the total number of 

sensor suite combinations will be: 

 

 !!

!

knk

n

k

n











 (30) 

 

Therefore, the number of sensor combinations when adding 1, 

2, 3, or 4 sensors to the baseline 6 sensors are: 

 

 Baseline sensors   1 combination 

 Baseline + 1 sensor (n = 4, k = 1) 4 combinations 

 Baseline + 2 sensors (n = 4, k = 2) 6 combinations 

 Baseline + 3 sensors (n = 4, k = 3) 4 combinations 

 Baseline + 4 sensors (n = 4, k = 4) 1 combinations 

 Total sensor combinations             16 combinations 

 

The subsections below will present and discuss results from 

the application of the sensor selection metrics for performance 

estimation and gas path fault diagnostics. 

 

Sensor Selection for Performance Estimation 
Performance estimation accuracy is assessed based on the 

health parameter mean squared estimation error offered by 

different sensor suites. The linear engine model contains 10 

health parameters as shown in Table 2, which represent 

efficiency and flow capacity scalars associated with each major 

rotating module of the engine. In this study, deviations in all 

health parameters are assumed to be uncorrelated, and 

randomly shifted from their trim conditions with a standard 

deviation of 2%. Since a parameter’s variance is equal to its 

standard deviation squared, the health parameter covariance 

matrix, Ph, is defined as a diagonal matrix with all diagonal 

elements equal to 4.0. The subsections below will present 

health parameter estimation results first assuming application of 

a Kalman filter estimator and then the MAP estimator. 

 

Kalman Filter Sensor Selection Results. For each of 

the 16 candidate sensor suites, the Kalman filter SSEE metric 

shown in Eq. (6) is applied to calculate the theoretical health 

parameter SSEE offered by each of the 16 candidate sensor 

suites. Additionally, a Monte Carlo simulation analysis is 

conducted to verify the theoretically predicted results. This is 

based on 200 health parameter vector combinations randomly  

Table 1.  State variables and control inputs 

  State 

  variables (x) 
   Control inputs (u) 

Nf – fan speed Wf – fuel flow 

Nc – core speed VSV – variable stator vane 

Hs_LPC – LPC metal temp VBV –variable bleed valve 

Hs_HPC – HPC metal temp  

Hs_burner – burner metal temp  

Hs_HPT – HPT metal temp  

Hs_LPT – LPT metal temp  

 

Table 2.  Health parameters (h) 

    Health parameters 

1 ηFAN Fan efficiency 

2 γFAN Fan flow capacity 

3 ηLPC Low pressure compressor (LPC) efficiency 

4 γLPC Low pressure compressor (LPC)  flow capacity 

5 ηHPC High pressure compressor (HPC) efficiency 

6 γHPC High pressure compressor (HPC)  flow capacity 

7 ηHPT High pressure turbine (HPT) efficiency 

8 γHPT High pressure turbine (HPT)  flow capacity 

9 ηLPT Low pressure turbine (LPT) efficiency 

10 γLPT Low pressure turbine (LPT)  flow capacity 

 

Table 3. Sensed outputs and standard deviation as percent of 

operating point trim values 

 Sensed output 
Standard 

deviation 

Baseline 

Sensors 

Nf* – fan speed (rpm) 0.360 rpm 

Nc – core speed (rpm) 1.23 rpm 

Ps30 – HPC exit static pressure 0.333 psia 

T30 – HPC exit total temp 0.273 ºR 

P50 – LPT exit total pressure 0.021 psia 

T50 – LPT exit total temp 0.259 ºR 

Additional 

(Optional) 

Sensors 

P14 – Bypass duct total pressure 0.022 psia 

T14 – Bypass duct total temp 0.117 ºR 

P25 – HPC inlet total pressure 0.031 psia 

T25 – HPC inlet total temp 0.132 ºR 

* Note: For the MAP estimator and gas path fault diagnostics, fan 

speed (Nf) serves as the engine power reference parameter and is 

replaced in the list of six baseline sensors by fuel flow (Wf), which has 

a standard deviation of 9.03 pounds per hour (pph) 
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selected in accordance with the defined health parameter 

covariance matrix, Ph. These random health parameter vectors 

and random measurement noise, v, are substituted into Eq. (1) 

to produce sensed measurement test cases used for Monte Carlo 

evaluation. The resulting mean squared estimation error results 

are shown in Table 4. The top half of the table shows 

theoretically predicted results while the bottom half shows 

results obtained via the Monte Carlo simulation analysis. Each 

row corresponds to one of the 16 candidate sensor suites. In the 

cases of Baseline + 1, +2, or +3 optional sensors, the sensor 

suite that provides the minimum SSEE is highlighted in red 

font. In general, adding sensors reduces the SSEE. The results 

also show that specific additional sensors are highly beneficial 

in improving the estimation accuracy of individual health 

parameters. For example, adding sensors such as P14 or T14 

improves the estimation accuracy of fan efficiency (ηFAN) and 

fan flow capacity (γFAN), while adding P25 improves estimation 

accuracy of LPC flow capacity (γLPC). It is also encouraging to 

note that the theoretical and simulation results exhibit good 

agreement. The overall estimation accuracy is very similar and 

the combination of sensors identified as optimal is identical 

(theoretical vs. Monte Carlo simulation) for each candidate 

number of sensors. Minor differences between theoretical and 

Monte Carlo results are likely due to the number of Monte 

Carlo trials conducted. If the number of trials were increased, 

the differences between analytical and simulation results should 

diminish. Based on this analysis, the sensor selection decisions 

for Kalman filter estimation accuracy would be: 

 

 Baseline + 1 sensor, choose: T25 

 Baseline + 2 sensors, choose: T25 and P25 

 Baseline + 3 sensors, choose: T25, P25, and P14 

 
MAP Estimator Sensor Selection Results. Next, sensor 

selection is conducted assuming that a MAP estimator is 

applied for health parameter estimation. Here, the metric 

previously introduced in Eq. (14) is used to theoretically predict 

the health parameter SSEE accuracy offered by each of the 

candidate sensor suites. Additionally, a Monte Carlo simulation 

study is performed to verify the theoretical results. Here, 

400,000* health parameter vectors are randomly generated in 

accordance with Ph. These health parameters along with 

random sensor measurement noise are substituted into Eq. (7) 

to produce sensed measurement test cases, which are then 

processed to produce health parameter estimates using Eq. (8). 

The resulting theoretical and Monte Carlo simulation health 

parameter mean squared estimation errors are shown in Table 5. 

Here, the theoretical and Monte Carlo simulation results exhibit 

very good agreement, which is expected given the large number  

                                                           
* The disparity in the number of Monte Carlo trials conducted for the MAP 

estimator versus the Kalman filter is due to the nature of the two estimators. 

The MAP estimator only requires a single steady-state sample for each random 
health parameter vector considered. Conversely, the Kalman filter, which is a 

dynamic recursive estimator, requires a sufficient quantity of measurement data 

at each health condition to ensure convergence to a steady-state solution. This 
limited the practical number of Monte Carol trials for the Kalman filter. 

Table 4. Kalman filter performance estimation accuracy 

 
 

Table 5. MAP estimator performance estimation accuracy 

 

P
1
4

T
1
4

P
2
5

T
2
5

ηFAN γFAN ηLPC γLPC ηHPC γHPC ηHPT γHPT ηLPT γLPT SSEE

6 2.53 1.66 3.34 3.07 0.26 1.51 0.95 0.04 1.00 2.85 17.21

7 x 0.23 0.15 3.43 3.29 0.25 1.47 0.96 0.04 1.02 2.83 13.66

7 x 0.17 0.20 3.47 3.22 0.26 1.48 0.95 0.04 1.01 3.01 13.81

7 x 2.54 1.67 3.23 0.05 0.26 0.70 0.83 0.04 0.86 2.65 12.83

7 x 2.50 1.65 1.94 0.69 0.22 1.29 0.80 0.04 0.83 2.62 12.58

8 x x 0.15 0.15 9.09 0.34 0.74 2.25 1.52 0.04 1.62 6.54 22.45

8 x x 0.23 0.15 3.33 0.05 0.27 0.73 0.82 0.04 0.86 2.67 9.14

8 x x 0.24 0.15 1.94 0.69 0.22 1.29 0.79 0.04 0.82 2.60 8.78

8 x x 0.13 0.16 3.83 0.05 0.31 0.82 0.94 0.04 0.99 3.18 10.44

8 x x 0.14 0.17 2.07 0.74 0.23 1.37 0.82 0.04 0.87 2.82 9.27

8 x x 2.51 1.66 0.03 0.05 0.01 0.06 0.80 0.04 0.83 2.64 8.60

9 x x x 0.16 0.15 3.43 0.05 0.27 0.74 0.99 0.04 1.05 3.19 10.07

9 x x x 0.16 0.16 0.64 0.27 0.08 0.44 0.80 0.04 0.84 2.72 6.13

9 x x x 0.24 0.15 0.03 0.05 0.01 0.06 0.79 0.04 0.83 2.61 4.79

9 x x x 0.14 0.17 0.03 0.05 0.01 0.06 0.81 0.04 0.85 2.80 4.95

10 x x x x 0.16 0.16 0.02 0.05 0.01 0.06 0.70 0.04 0.76 2.51 4.47

P
1
4

T
1
4

P
2
5

T
2
5

ηFAN γFAN ηLPC γLPC ηHPC γHPC ηHPT γHPT ηLPT γLPT SSEE

6 2.26 1.48 3.48 2.90 0.28 1.55 1.06 0.04 1.14 3.18 17.35

7 x 0.23 0.15 3.52 2.95 0.27 1.46 1.04 0.04 1.11 3.17 13.94

7 x 0.17 0.20 3.48 3.18 0.27 1.52 1.08 0.04 1.14 3.37 14.44

7 x 2.29 1.51 3.34 0.05 0.27 0.73 0.99 0.04 1.05 2.92 13.19

7 x 2.26 1.49 1.99 0.70 0.23 1.33 0.91 0.04 0.96 2.98 12.90

8 x x 0.15 0.15 8.16 0.87 0.74 3.04 1.77 0.04 1.89 6.92 23.74

8 x x 0.23 0.15 3.46 0.05 0.28 0.75 0.98 0.04 1.03 2.97 9.94

8 x x 0.24 0.15 2.03 0.72 0.23 1.35 0.90 0.04 0.94 3.00 9.60

8 x x 0.13 0.16 3.91 0.05 0.31 0.84 1.14 0.04 1.21 3.67 11.47

8 x x 0.15 0.17 2.05 0.73 0.23 1.36 0.93 0.04 0.98 3.20 9.84

8 x x 2.30 1.52 0.03 0.05 0.01 0.06 0.91 0.04 0.96 3.04 8.90

9 x x x 0.16 0.15 3.30 0.05 0.26 0.71 1.20 0.04 1.28 4.52 11.66

9 x x x 0.16 0.15 0.84 0.34 0.10 0.57 0.93 0.04 0.98 3.18 7.29

9 x x x 0.24 0.15 0.03 0.05 0.01 0.06 0.91 0.04 0.95 3.03 5.45

9 x x x 0.14 0.17 0.03 0.05 0.01 0.06 0.95 0.04 1.00 3.30 5.75

10 x x x x 0.16 0.15 0.02 0.05 0.01 0.06 0.80 0.04 0.86 2.84 4.98

#
 S

e
n
s
o
rs sensors added 

to baseline
Theoretical Health Parameter Mean Squared Estimation Errors (% squared)

#
 S

e
n
s
o
rs sensors added 

to baseline
Monte Carlo Health Parameter Mean Squared Estimation Errors (% squared)

P
1
4

T
1
4

P
2
5

T
2
5

ηFAN γFAN ηLPC γLPC ηHPC γHPC ηHPT γHPT ηLPT γLPT SSEE

6 2.45 1.64 2.81 3.09 0.27 1.35 0.88 0.04 1.06 2.78 16.35

7 x 0.48 0.15 2.81 3.08 0.27 1.34 0.88 0.04 1.04 2.78 12.86

7 x 1.12 1.23 2.81 3.07 0.27 1.34 0.88 0.03 1.02 2.78 14.54

7 x 2.45 1.64 2.75 0.04 0.27 0.91 0.75 0.04 0.90 2.62 12.36

7 x 2.45 1.64 1.92 0.64 0.22 1.31 0.71 0.04 0.86 2.57 12.36

8 x x 0.15 0.14 2.81 3.04 0.27 1.33 0.87 0.02 0.97 2.77 12.38

8 x x 0.48 0.15 2.75 0.04 0.27 0.90 0.74 0.03 0.89 2.62 8.87

8 x x 0.48 0.15 1.92 0.63 0.22 1.31 0.71 0.03 0.85 2.57 8.87

8 x x 1.12 1.23 2.75 0.04 0.27 0.90 0.74 0.03 0.86 2.61 10.55

8 x x 1.12 1.23 1.92 0.63 0.22 1.31 0.71 0.03 0.82 2.57 10.55

8 x x 2.45 1.64 0.02 0.04 0.01 0.05 0.71 0.04 0.86 2.57 8.40

9 x x x 0.15 0.14 2.75 0.02 0.27 0.89 0.74 0.02 0.80 2.61 8.39

9 x x x 0.15 0.14 1.92 0.61 0.22 1.29 0.70 0.02 0.76 2.56 8.39

9 x x x 0.48 0.15 0.02 0.04 0.01 0.05 0.71 0.03 0.85 2.57 4.91

9 x x x 1.12 1.23 0.02 0.04 0.01 0.05 0.71 0.03 0.82 2.57 6.59

10 x x x x 0.15 0.14 0.02 0.02 0.01 0.03 0.70 0.02 0.76 2.56 4.43

P
1
4

T
1
4

P
2
5

T
2
5

ηFAN γFAN ηLPC γLPC ηHPC γHPC ηHPT γHPT ηLPT γLPT SSEE

6 2.46 1.64 2.81 3.10 0.27 1.34 0.88 0.04 1.06 2.78 16.36

7 x 0.48 0.15 2.81 3.09 0.27 1.33 0.88 0.04 1.04 2.78 12.86

7 x 1.13 1.23 2.81 3.08 0.27 1.34 0.88 0.03 1.02 2.78 14.55

7 x 2.46 1.64 2.75 0.04 0.27 0.91 0.75 0.04 0.90 2.62 12.37

7 x 2.46 1.64 1.91 0.64 0.22 1.31 0.71 0.04 0.86 2.57 12.36

8 x x 0.15 0.14 2.81 3.05 0.27 1.32 0.87 0.02 0.97 2.77 12.38

8 x x 0.48 0.15 2.75 0.04 0.27 0.90 0.74 0.03 0.89 2.62 8.86

8 x x 0.48 0.15 1.91 0.63 0.22 1.30 0.71 0.03 0.85 2.57 8.86

8 x x 1.12 1.23 2.75 0.04 0.27 0.90 0.74 0.03 0.86 2.62 10.55

8 x x 1.12 1.23 1.91 0.63 0.22 1.30 0.71 0.03 0.82 2.57 10.54

8 x x 2.46 1.64 0.02 0.04 0.01 0.05 0.71 0.04 0.86 2.57 8.41

9 x x x 0.15 0.14 2.75 0.02 0.27 0.88 0.74 0.02 0.80 2.61 8.38

9 x x x 0.15 0.14 1.91 0.61 0.22 1.29 0.70 0.02 0.76 2.56 8.38

9 x x x 0.48 0.15 0.02 0.04 0.01 0.05 0.71 0.03 0.85 2.57 4.91

9 x x x 1.12 1.23 0.02 0.04 0.01 0.05 0.71 0.03 0.82 2.57 6.60

10 x x x x 0.15 0.14 0.02 0.02 0.01 0.03 0.70 0.02 0.76 2.56 4.43

#
 S

e
n
s
o
rs sensors added 

to baseline
Theoretical Health Parameter Mean Squared Estimation Errors (% squared)

#
 S

e
n
s
o
rs sensors added 

to baseline
Monte Carlo Health Parameter Mean Squared Estimation Errors (% squared)
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of Monte Carlo trials runs. The sensor suites identified as 

optimal for the MAP estimator agree with those previously 

identified in Table 4 for the Kalman filter. Furthermore, the 

mean squared estimation errors of individual health parameters 

and the overall health parameter SSEE for most sensor suites 

exhibit fairly good agreement between the MAP estimator and 

the Kalman filter. This is not unexpected since both estimators 

are designed to minimize the mean sum of squared estimation 

errors, and in this study both incorporate the same a priori 

knowledge regarding health parameter covariance, Ph, and 

make the same assumptions regarding sensor measurement 

covariance, R. 

 

Gas Path Fault Diagnostics Sensor Selection Results 
For the gas path fault diagnostics sensor selection problem 

setup, it is assumed that the engine may encounter eight 

different gas path fault types consisting of turbomachinery 

faults (implemented via health parameter perturbations) and 

actuator biases. The eight faults along with the parameter 

perturbations applied within C-MAPSS40k to generate the fault 

influence coefficient matrix are shown in Table 6. For this 

study, all faults are assumed to occur in isolation and to be of 

equivalent probability of occurrence.  

 

Table 6.  Gas Path Faults 

Fault 

ID 

Fault 

type 

Health parameters and 

actuator biases  

1 Fan fault ηFAN = -1%, γFAN = -2% 

2 LPC fault ηLPC = -1%, γLPC = -2% 

3 HPC fault ηHPC = -1%, γHPC = -2% 

4 HPT fault ηHPT = -2%, γHPT = +1% 

5 LPT fault ηLPT = -2%, γLPT = +1% 

6 Wf bias Wf bias = -2% 

7 VSV bias VSV bias = -1 degree stroke 

8 VBV bias VBV bias = +20% 

 

For each of the 16 candidate sensor suites, the correct 

classification rate metric given in Eq. (29) is applied to 

calculate the theoretical correct classification rate offered by 

each candidate sensor suite. In making this assessment, the 

applied WSSM signal fault detection threshold is set to give a 

theoretical false positive rate of 0.01 (1%) as defined via Eq. 

(22). This threshold will change based on the number of sensors 

included in each candidate sensor suite. Additionally, a Monte 

Carlo simulation analysis was conducted to verify the 

theoretically predicted CCR results. This is done using Eq. (15) 

to generate 80,000 no fault cases and 10,000 fault cases for 

each individual fault type, all corrupted by random 

measurement noise, v. This data set is then analyzed by 

applying the single fault diagnostic logic shown in Eqs. (16)-

(20) to detect and classify the occurrence of any faults. Initial 

diagnostic analysis revealed that even the baseline 6 sensor 

measurement suite performed extremely well in diagnosing the 

gas path faults considered.  Therefore, in order to present a 

more interesting sensor selection problem, the sensor 

measurement noise was increased by a factor of four and the 

diagnostic assessment was repeated. The ensuing correct 

classification rate results are shown in Table 7. The top half of 

the table shows theoretically predicted results while the bottom 

half shows results obtained via the Monte Carlo simulation 

analysis. Here, the theoretical results slightly under-predict the 

correct classification rates found via Monte Carlo analysis. This 

is due to the simplification made in deriving the theoretical 

correct classification rate, which essentially establishes a 

theoretical lower bound on this rate. Based on the theoretical 

analysis, the sensor selection decisions for gas path fault 

diagnostics would be: 

 

 Baseline + 1 sensor, choose: T25 

 Baseline + 2 sensors, choose: T25 and T14 

 Baseline + 3 sensors, choose: T25, T14, and P25 

 

The Monte Carlo simulation analysis shows the same optimal 

sensor suites except for the Baseline + 3 sensor case, where P14 

would be substituted in place of P25.  

 

Table 7. Gas path fault diagnostic accuracy 

 

 

P
1
4

T
1
4

P
2
5

T
2
5

Fan LPC HPC HPT LPT Wf VSV VBV
No

Fault

Fault

CCR

6 73.3 74.4 99.2 100.0 98.8 92.1 60.6 78.4 99.0 84.6

7 x 80.6 74.6 99.2 100.0 99.8 90.6 60.7 78.6 99.0 85.5

7 x 81.6 75.2 99.2 100.0 99.9 90.6 60.8 79.5 99.0 85.8

7 x 76.3 87.1 99.9 100.0 98.8 90.6 70.4 88.8 99.0 89.0

7 x 77.0 94.2 99.9 100.0 98.8 90.6 73.3 98.8 99.0 91.6

8 x x 86.3 75.4 99.2 100.0 100.0 89.0 60.7 79.7 99.0 86.3

8 x x 82.9 87.2 99.9 100.0 99.8 89.1 70.1 88.9 99.0 89.7

8 x x 83.5 94.3 99.9 100.0 99.8 89.1 72.9 98.8 99.0 92.3

8 x x 83.8 87.6 99.9 100.0 99.9 89.1 70.1 89.3 99.0 90.0

8 x x 84.4 94.3 99.9 100.0 99.9 89.1 72.9 98.8 99.0 92.4

8 x x 77.5 95.9 99.9 100.0 98.8 89.1 76.3 98.8 99.0 92.0

9 x x x 88.0 87.7 99.9 100.0 100.0 87.5 69.7 89.4 99.0 90.3

9 x x x 88.4 94.4 99.9 100.0 100.0 87.5 72.4 98.8 99.0 92.7

9 x x x 83.9 95.9 99.9 100.0 99.8 87.5 75.7 98.8 99.0 92.7

9 x x x 84.7 96.0 99.9 100.0 99.9 87.5 75.8 98.8 99.0 92.8

10 x x x x 88.7 96.0 99.9 100.0 100.0 86.0 75.2 98.8 99.0 93.1

P
1
4

T
1
4

P
2
5

T
2
5

Fan LPC HPC HPT LPT Wf VSV VBV
No

Fault

Fault

CCR

6 77.3 79.2 99.3 100.0 98.8 92.1 78.1 82.5 99.0 88.4

7 x 83.7 79.5 99.3 100.0 99.8 90.5 77.2 82.5 99.0 89.1

7 x 83.9 80.0 99.3 100.0 99.8 90.4 77.1 82.9 99.0 89.2

7 x 77.3 87.8 99.9 100.0 98.8 90.4 79.6 89.3 99.0 90.4

7 x 77.7 94.7 100.0 100.0 98.8 90.3 80.4 98.9 98.9 92.6

8 x x 87.8 80.2 99.3 100.0 100.0 89.1 76.3 83.1 99.0 89.5

8 x x 84.0 88.1 99.9 100.0 99.8 89.1 78.7 89.3 99.0 91.1

8 x x 84.1 94.7 100.0 100.0 99.8 89.0 79.4 98.9 98.9 93.2

8 x x 84.0 88.6 99.9 100.0 99.8 89.0 78.5 89.6 99.0 91.2

8 x x 84.3 94.8 100.0 100.0 99.8 89.0 79.6 99.0 99.0 93.3

8 x x 77.5 96.0 100.0 100.0 98.8 88.9 80.6 98.9 99.0 92.6

9 x x x 88.1 88.7 99.9 100.0 100.0 87.5 77.9 89.7 99.0 91.5

9 x x x 88.3 94.8 100.0 100.0 100.0 87.7 78.8 99.0 99.0 93.5

9 x x x 84.2 96.0 100.0 100.0 99.8 87.5 80.0 98.9 99.0 93.3

9 x x x 84.3 96.1 100.0 100.0 99.8 87.4 80.0 99.0 99.0 93.3

10 x x x x 88.3 96.1 100.0 100.0 100.0 86.0 79.3 99.0 99.0 93.6

#
 S

e
n
s
o
rs sensors added 

to baseline
Theoretical Correct Classification Rate (CCR) %

#
 S

e
n
s
o
rs sensors added 

to baseline
Monte Carlo Correct Classification Rate (CCR) %
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DISCUSSION 
The sensor selection metrics introduced in this paper were 

shown to perform well in identifying optimal sensor suites from 

a performance estimation and diagnostic accuracy perspective. 

Although not specifically shown in this paper, the resulting 

sensor suites identified to be optimal are expected to change if 

different assumptions are made regarding the design inputs 

such as sensor measurement noise, health parameter 

covariance, fault types and magnitudes, and the engine model 

that the metrics are applied to. 

A notable finding in this work was the relative agreement 

between the Kalman filter and MAP estimator in terms of the 

predicted SSEE results and the sensor suites identified to be 

optimal. As previously noted, this is not unexpected given that 

both estimators are set up to minimize mean squared estimation 

error and, in the given example application, both incorporate 

the same a priori knowledge regarding health parameter 

covariance and sensor measurement noise covariance. 

However, an advantage of the MAP estimator metric is that it 

offers a closed-form solution while the Kalman filter SSEE 

metric requires solution of the V* transformation matrix via an 

optimal iterative search. As such, the Kalman filter metric can 

be prone to convergence to local minima. To guard against such 

occurrences, a recommended approach is to cross-check 

Kalman filter results using the MAP metric to ensure that 

similar sensor suites and SSEE values are predicted.  

The performance estimation metrics exhibited very good 

agreement between their theoretically predicted estimation 

accuracy and that obtained via Monte Carlo simulation 

analysis. However, the theoretical gas path fault diagnostic 

metric was found to under-predict the CCR found via Monte 

Carlo analysis. This is due to the two-fault class 

misclassification assumption made in deriving the metric. 

While this simplification does make the derivation tractable, it 

can lead to inaccurate results, especially when faults are prone 

to misclassification as more than one fault type. Another 

simplification made in this derivation is to assume that all 

sensor residual measurements are independent. This assumption 

does not usually hold for gas turbine engine applications, as 

some amount of covariance usually exists between sensor 

residual measurements. For example, they are corrected using 

the same parameters and generated using the same reference 

model. An approach to address this is to define sensor 

measurement probability density functions in multi-parameter 

space and then perform multidimensional integration to assess 

detection and classification performance. However, this would 

add much more complexity. The given metric based on the 

properties of the chi square distribution and the non-central chi 

square distribution is more simplistic, but should be verified by 

additional analysis such as the Monte Carlo simulation analysis 

conducted in this paper.  

A couple of recommendations for follow-on work are 

suggested. First, the presented analytical metrics are based on 

linear theory while aircraft engines exhibit nonlinear behavior. 

As such, a recommendation to extend the analysis to full-

envelope engine operation would be to repeat the analysis at 

different engine operating points to assess how this affects 

sensor selection results. Furthermore, equal importance is 

placed on each parameter to be estimated and each fault type to 

be diagnosed. A natural extension to the metrics is to place a 

user-specified weighting on the different parameters or faults 

based on their criticality or frequency of occurrence. Finally, 

the estimation and diagnostic accuracy is only one piece of the 

overall sensor selection decision process. Other factors of merit 

include criteria such as sensor weight, reliability, and overall 

life cycle cost. Those factors should also be considered as part 

of the sensor selection process.  

CONCLUSIONS 
The sensor selection metrics introduced in this paper 

provide analytical tools to assist engine health management 

system designers in making sensor selection decisions. The 

metrics are easy to use, and are specifically tailored towards 

estimation and diagnostic approaches commonly applied to 

aircraft engines. They can be readily applied for assessing the 

benefits of adding or removing currently available engine 

sensors, or assessing the benefits of newly developed sensors as 

they become available. Through Monte Carlo simulation 

analysis, the metrics were verified to perform well in 

identifying optimal sensor suites when evaluated using linear 

system information. For both Kalman filter and maximum a 

posteriori health parameter estimation, the corresponding 

sensor selection metrics were found to perform very well in 

satisfying their intended objective—identifying the sensor suite 

that minimizes the mean sum of squared estimation errors. The 

gas path fault diagnostic sensor selection metric based on 

theoretical correct classification rate also performed well in its 

objective of identifying sensor suites that provide the best 

diagnostic performance. Due to a simplification made in the 

theoretical derivation, the metric was found to under-predict the 

true correct classification rate. However, it does provide a 

theoretical lower bound on correct classification performance 

offered by a given sensor suite. Additionally, it is effective for 

identifying fault pairs at risk for misclassification and making 

sensor selection decisions to address such risks. Recommended 

follow on work is to couple these accuracy metrics with 

additional figures of merit pertinent for sensor selection 

decision. This includes considering the individual criticality of 

the performance parameters to be estimated or the fault types to 

be diagnosed, and to also couple these metrics with additional 

metrics reflecting the life cycle cost of adding specific sensors.  
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