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Materials Research Driven by Key
Aerospace Challenges

Higher temperature and harsh

environment for aerospace Lightweight requirements for Low carbon and low
large structures emission aircraft
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Replacing Carbon Fiber with Carbon Nanotube (CNT) in
Polymer Composites Offer Significant Weight eduction
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Benign Purification Method Developed for
CNT Sheets
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E-Beam Irradiation Improves CNT
Yarn Properties
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Engineered Properties of Fiber Reinforced Polymer Composites
Through Incorporation of Nanotube and Nanofabric

Polymer nanocomposite
for structural and thermal
management

. Prepreg

/ Nanofabric or
nanocomposite

Incorporation of nanofabric
in composite

Toughening of composites

Normal PMC

Nanotoughened PMC
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Nanoclay Polymer Composite
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Application of Nanoclay Composites In
Food Packaging Industry

Oxygen sensitive products

Carbon dioxide sensitive
products

Source: Nanocor presentation
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Carbon Nanotube Reinforced Copper
Composite

 Powder Metallurgy

— Ball mill MWCNT and Cu alloy
powder

— Consolidate by Field Assisted
Sintering Technology (FAST) or
extrusion

« Vapor Infiltration

— Start with highly oriented MWCNT
nanoforests

— CVD or otherwise infiltrate with
carbide forming element to form
carbide monolayer

— Infiltrate with copper by CVD or
cast with molten copper

L&
||||||

5 v/o mullwalled carbon nanotube
(MWCNT)/Cu Nanoforest Composite

CNT reinforced Cu holds promise for increasing thermal conductivity of
Cu, but significant manufacturing challenges remain
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Electrically Conductive CNT Yarns/Fibers Offer Potential for
Significant Current Carrying Capability Than Cu

Commercial CNT Resistance
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vs. Copper
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CNT/Glass Fiber Composite
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Boron NltrldeNanotube (BNNT)

N
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Thermal Conductivity Enhancement of Polymer
Composites with BNNT and BNNS Addltlons
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Mechanically Strong Aerogel Thermal Insulation

)
Highly porous solid,
10-40 nm pore size

NASA developed Sandwich' Structure

...but are extremely Incorporating Aerogels

fragile and moisture
Aerogel insulation on sensitive
cryotank

strong silica aerogel

High temperature ceramic aerogel

Polyimide aerogel
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Advances in Permanent Magnets
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Promise of Nanocomposite Magnets

10nm alternate hard
and soft magnet layer
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Nanotechnology in Consumer Products

Over 1000
consumer

products
already
available*

www.nanotechproject.org/consumerproducts
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Outline

 Nanomaterials

« Smart materials

e Sensor materials

« Multifunctional and hybrid structures/materials
« Additive manufacturing of composite materials

 Material Informatics
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Piezoelectric Materials
PIEZO MATERIALS ARE ACTUATORS AND SENSORS

In piezoelectric materials, mechanical stress causes crystals to electrically

polarize and vice versa. Hit them with electric current and they deform (actuator);
deform them and they generate electricity (sensor).
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Piezoceramic for Control of Vibration in Gas Turbine
Engine Fan Blade
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Applicable to vibration control in machining
processes enabling precision machining
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Aerospace Application of
Piezoceramic Materials

James Webb Telescope,
electrostrictive ceramic
actuator to control the
shape of mirrors

Smart helicopter blade
for noise and vibration
control
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Development of High Temperature Piezoceramic
Materials for Aerospace Applications
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New complex ceramic chemistries and
fabrication process being developed
to increase use temperature of

piezoceramic materials
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Aerospace Application of High
Temperature Piezoceramic Materials

Ultrasonic drilling on Venus surface

Active combustion
control through fuel
flow modulation

Backing PZT Stack Horn Corer

L Original
undamaged

Elade response
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Blade number
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Actuation Based on Shape Memory Alloys

1A special type of metallic
SMA Spring alloy that when deformed at
Load Biased low temperatures is capable
of “remembering” and
recovering its original shape
upon heating

High Temperature SMA

Chevron
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Shape Memory Alloy Applications
Space

Fluid handling
Flexibility (structure alignment)

/ | SMA Bell
@ .; Dynamgsgl\ilr\(gs

SMA Spring Tire
o Superelastic technology

o Lunar rovers
o Terrestrial tires

SMA Docking Coupling
o Cryogenic transfer coupling

o Orbital propellant depots
o Propellant handling/protection

- .SMA Bearings

o Corrosion resistant
- o Non-galling properties
/ o Highyield

SMA Thermal Switch

o Thermal management
o Clean & spark-free operation
o Passive or active control
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Shape Memory Alloy Applications
Aero

SMA Cellular Structures

Shape change region

JAdaptive Fan Blade
o Embedded SMA actuators
o Aerodynamic efficiency
o Specific fuel consumption reduction

o Airframe and engine
: components
¢ o Morphing airfoils
o Light weight trusses

10° gero torge

Jariable Geometry Chevron
o SMA actuators morph the chevron
o Noise reduction at takeoff
o Shock cell noise reduction at cruise

.Smart Fastening Systems

o Latches
o Oxygen masks
o Seat configurations

o Variable Area Nozzle

:o High bypass turbofan

'o  SMA torque tubes provide flap rotation
'o  Engine noise reduction
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Shape Memory Alloy Applications
Non-Aerospace Potential

Oil and Gas Industry

' . Medical Industry

o SmartRAM™ actuators (LMP)

o SMA couplings (Aerofit Inc)

o Deep-water valves/shut off valves
o Self-torquing fasteners

[
o Surgical tools
o Stents and implants

. Glasses frames
Cleveland Clinic °

Other Applications
o Home appliances
o Electronics
o Transportation
o Air conditioners

s~ CORVETTE’S HEAT-ACTIVATED ‘SMART MATERIAL’

. p
The new 2014 Chevrolet Co vette uses a li ghxwe ight heal a tivated shape memory a“oyw re N /
in place of a heavier motorized part to open nt that a s the trunk lid to close more easily. N,

.Automotive Industry
o Louvers

o  Quiet actuators

o Door handle
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Development of High Temperature
Shape Memory Alloys
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High temperature shape memory alloys will enable new aerospace
and automotive applications
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 Smart materials

e Sensor materials

« Multifunctional and hybrid structures/materials
« Additive manufacturing of composite materials

 Material Informatics
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High Temperature Thin Film Ceramic Sensors

SIC Pressure Sensor

metal contacts
Ti/ TaSi, / Pt

strain gages
n-type SiC

isolation layer
p-type SiC

substrate
n-type SiC

Cr-doped GdAIO, Coating for
Temperature Measurement

25 pm Cr:GAP

200 pm YSZ

NiPtAl !Hnwmetl

Multifunctional
TaN-Based Sensors
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Chemical Sensors

H2 Sensor
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SiC Hydrocarbon
Sensor

Nanocrystalline Tin
Oxide NOx and CO

Sensor
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Carbon Nanotube(CNT)-Based Strain,

Damage, and Chemical Sensors
CNT Gas/Chemical Sensor

Drilling Rover
{e.9. RESOLVE)

Capacitance Based Strain Sensor T
on Teflon (left) and CFRP (right)

Platinum
electrode

CNT Strain Sensor
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e Sensor materials

« Multifunctional and hybrid structures/materials
« Additive manufacturing of composite materials

 Material Informatics
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Multifunctional Structures

Energy Absorbing Foam

BAE smart skin — sense own
health like human skin,
thousands of microsensors

Multifunctional
structure with
energy storage
capability

Cessna smart skin - STAR-C2, which
stands for “smoothing, thermal,
absorbing, reflective, conductive,
cosmetic
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Increasing Use of Hybrid Materials

Hybrid Composite Gear

Blades

SX
Rim

700 °C
Bond

B
L Line  Hyprid Disk
v y

A

Fiber Reinforced Foam Core
(FRF)Structure

C-C Composite/Foam/Titanium
tube assembly bonded with
CuSil-ABA braze paste
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e Sensor materials

« Multifunctional and hybrid structures/materials

« Additive manufacturing of composite materials

« Material Informatics
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Trend Toward Non-Metallic Gas Turbine Engine

Extensive use of ceramic matrix composite (CMC) in
gas turtiine engines
( \

Combustor Vanes Shrouds Blades Turbine Frame Flaps &

liners Flowpath Seals

\.Erlables_mgh OPR Wlth 200 - 700 F+ temperature
‘advantage over metals,, weight = 1/3 of metals

|
ExtteSIve use (_)f polymer |, Increasingly non-metallic gas turbine engine
matrlx composne (F_’MC) « Economical composite manufacturing process will be
in gas turbine engines required
CO|d section with increase |. Additive manufacturing potential solution
In PMC temperature
capability
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Additive Manufacturing of Polymer Matrix Composites

Melts polymer filament and deposits it layer-by-layer following CAD files

Support material filament ﬁ
Build material filament =—————.
Extrusion head \
Drive wheels
Liquifiers
Extrusion nozzles

~ \U

Part supports

Fabrication of high temperature PMC
was enable by: T

» Chopped-fiber reinforcement
» Moisture reduction in FDM filament  reameese
* Versatile printing pattern design PR N

Support material SPOO! w——

Build material spool \Q
Benefits:

* Quick turn around time for complex parts
« Shorter component production and testing cycle
* Reduced cost of low production volume components
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Additive Manufacturing of Polymer Matrix Composite
Components

Ultem 1000
composite vane
by fused deposition
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Inlet Guide i’~‘~___} First Stage
Vane Compressor Blade _-

Attachment detail
400°F operating temperature

—~ -

* Ultem 1000 (T, = 423°F) with chopped carbon fiber
* First Polyetherimide composite fabricated
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Additive Manufacturing of Ceramic
Matrix Composite (CMC)

Binder solution

SiC
Powder

Fowder feed raller
Frinting head

o o
4 :!‘__ =]
T ah ¥ R R fa

Glued pwder
ito form parts)

Binder jet printing allows for powder bed processing with tailored binders
and chopped fiber reinforcements for fabricating advanced ceramics
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Additive Manufacturing of Ceramic Matrix Composites

ey

first stage nozzle segments

high pressure turbine nozzle segments
’ > C( : /0 Ct

cooled doublet nozzle sections
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« Nanomaterials

e Smart materials

e Sensor materials

« Multifunctional and hybrid structures/materials

« Additive manufacturing of composite materials

« Material Informatics
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Material Informatics — Data Driven
Materials Science

- =
«Data mining *Materials discovery |
+ + _ «Structure-property-processing
-Dimensionality = relationships
reduction + Hidden data trends
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Concluding Thoughts

Future will be integration of

« Computational material design and big data
analytics

« Nanomaterials as building blocks

« Sensors and actuators for adaptability and self
healing

« Additive manufacturing
« Multifunctionality

to create materials with engineered and tailored
properties
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