Tunable Magnetic Resonance in Microwave Spintronics Devices

Yunpeng Chen1, Xin Fan2, Yunsong Xie1, Yang Zhou1, Tao Wang1, Jeffrey D. Wilson3, Rainee N. Simons3, Sui-Tat Chui1, John Q. Xiao1

1Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 USA
2Department of Physics and Astronomy, University of Denver, CO 80208 USA
3NASA Glenn Research Center, Cleveland, OH 44135 USA

Abstract — Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronic devices, which is 10X higher than conventional methods.

Index Terms — magnetic resonance, multi-ferroic, exchange coupling, tunable microwave device.

I. INTRODUCTION

Spintronics utilizes electron spins in addition to, and sometimes in place of, electron charges to achieve new electron device functions. The discovery of giant magnetoresistance (GMR) in 1988 revolutionized the data storage in hard-drives [1]. More recently, the discovery of tunnel magnetoresistance (TMR) phenomena in magnetic tunnel junctions (MTJs) accelerated the development of hard-drive technology. Besides reading out the static magnetic moment (stored information) of a nano-magnet, the development of spintronics also offers a new scheme to manipulate the magnetic moment by means of spin transfer torque (STT) that transfers angular momentum from spin-polarized charge carriers to local magnetic moments without using an electromagnet. Owing to its fast speed, high density, and low energy consumption, STT has been utilized in developing the next generation of magnetic random access memories (MRAM). Another emerging subfield of spintronics involves coupling spin transport to spin dynamics. Since spin dynamics usually occurs in the gigahertz frequency range due to the intrinsic resonance of magnetic materials, spintronics devices have found applications at microwave frequencies, for example in microwave generators, detectors, and phase shifter [2-4].

The typical structure of a spintronics device is a non-magnetic metal or insulating layer sandwiched between two ferromagnetic (FM) layers as illustrated in Figure 1 (a), which is known as spin valve (SV) or MTJ. One of the FM layers usually has its magnetic moment (M_{fixed}) fixed and aligned with the adjacent antiferromagnetic (AFM) layer through exchange bias. The other layer’s magnetic moment (M_{free}) is free to rotate with the magnetic fields. The electric resistance of the structure is determined by the relative angle between M_{fixed} and M_{free}. When a current is flowing through the stack, the electron spins are polarized along the direction of M_{fixed} (Figure 1a). If M_{free} is not collinear with M_{fixed}, the electrons with polarized spins passing through the free layer will align with M_{free} due to exchange interaction. By the conservation of angular momentum, the change of the carrier spin momentum will transfer to M_{free}, which is the spin transfer torque.

![Image](https://ntrs.nasa.gov/search.jsp?R=20150022405)

Figure 1. - (a) Illustration of STT in a spintronics device and the magnetoresistance as a function of relative angle. (b) Illustration of STT due to the spin Hall effect (SHE) and the torques on local magnetic moment. (c) Spin-torque microwave oscillator. (d) Spintronics microwave detector. (e) Spin wave logic device.

To generate the spin current without passing a charge current through a magnetic layer, one can pass a spin current through a material with strong spin orbital coupling (SOC) such as heavy metals (HM) like Pt or topological insulators [5]. Due to SOC, the electrons with opposite spins will be separated in the direction transverse to the electric current (Figure 1 (b)), which is known as the spin Hall effect (SHE). The transverse spin current diffuses into the adjacent FM layer and manipulates its magnetic configuration as illustrated in Figure 1 (b). The STT (T_{STT}) is aligned with the damping torque ($T_{damping}$). Depending on the sign of the injected spin,
the STT will either enhance the damping or act as an anti-damping torque. STT is able to reduce the device noise by compensating the damping, exciting magnetic resonance and emitting microwaves by sustaining magnetization precession. Figure 1 (c) illustrates the principle of a nano-STT-microwave oscillator. The spintronic devices can also work as nanomicroelectronic detectors based on the spin rectification effect. As depicted in Figure 1 (d), the magnetization precession is excited through the interaction of microwave magnetic or electric fields. In a SV or MTJ, the rotation of free layer magnetization will cause a time variant resistance. The ac resistance rectifies the microwave field, resulting in a dc voltage output. Moreover, the microwave field can be used to excite a spin wave (the wave of angular momentum oscillation) in a spin-wave logic device with low operating energy (Figure 1(e)), which has the potential to be more energy efficient than the conventional complementary metal-oxide-semiconductor (CMOS) technology based charge transfer devices.

In conventional hybrid tunable microwave spintronic devices, the magnetic resonance is controlled by an external applied magnetic field, which is generated by a bulky and energy inefficient electromagnet. To integrate these devices and to lower the power consumption, it is desirable to eliminate the use of an electromagnet. Researchers have demonstrated that the magnetic resonance in piezoelectric/ferromagnetic multiferroic heterostructures can be controlled by an external electric field. However, no material satisfies both tunable range and microwave performance simultaneously. This paper reports a new technique to control the magnetic resonance, which is demonstrated by exploiting the huge interlayer exchange coupling field present between the device magnetic layers and the high frequency modes of coupled oscillators.

II. MAGNETIC RESONANCE MODES IN EXCHANGE COUPLED MAGNETIC BILAYER

Exchange interaction exists inside every magnetic material and also at the interface of two different magnetic materials. In a typical ferromagnetic material, the exchange field arising from the Pauli Exclusion Principle can be as high as 10^5 T, equivalent to a 28 THz frequency range. The idea of using two coupled layers FM1 and FM2 resembles two coupled oscillators, which exhibit low frequency acoustic and high frequency optical modes, and the sensitivity of the latter will depend on the coupling at the interface. We model the interface coupling arising from the dominating exchange coupling between two nearest neighboring layers and neglect much smaller dipolar interaction. The interlayer exchange energy per unit area is described as

$$E = -J \frac{\vec{M}_1 \cdot \vec{M}_2}{M_{s1} M_{s2}} .$$ \hspace{1cm} (1)

Where \vec{M}_1 and \vec{M}_2 are the magnetization vector of FM1 and FM2, M_{s1} and M_{s2} are the saturation magnetization of FM1 and FM2, respectively, and J is the interface exchange coupling strength. The coupled magnetization dynamics can then be described by the modified Landau-Lifshitz-Gilbert (LLG) equation as

$$\frac{d\vec{M}_i}{dt} = -\gamma \mu_0 \vec{M}_i \times (\vec{H}_{\text{eff},i} + \vec{H}_i) + \frac{\alpha_i}{M_{s,i}} \vec{M}_i \times \frac{d\vec{M}_i}{dt} .$$ \hspace{1cm} (2)

Where γ is the gyromagnetic ratio, $\vec{H}_{\text{eff},i}$ is the other effective field on the i-th layer including the external field, anisotropy field and demagnetizing field, α_i is the damping of the i-th layer, and $M_{s,i}$ is the saturation magnetization of the i-th layer.

![Illustration of acoustic mode and optical mode](image)

Figure 2. - Illustration of acoustic mode and optical mode. The magnetizations oscillate in-phase at acoustic mode and out-of-phase at optical mode.

We are able to simulate the permeability spectrum of the exchange coupled layer. Indeed, when the interface exchange coupling is finite but much weaker than the intralayer exchange coupling inside each ferromagnetic layer, the bilayer exhibits two microwave-resonance modes as illustrated in Figure 2. The two modes are the acoustic mode with the magnetizations in two layers precessing in-phase and the optical mode with the two magnetizations precessing out-of-phase. In a simplified example, where FM1 and FM2 are identical with negligible anisotropy, i.e. $M_{s1} = M_{s2} = M_s$ and $d_1 = d_2 = d$, the two resonance modes can be calculated as

$$\omega_{\text{acoustic}} = \gamma_0 \sqrt{H(H+M_s)}$$ \hspace{1cm} and \hspace{1cm} (3)

$$\omega_{\text{optical}} = \gamma_0 \mu_0 M_s d H \left(\frac{2J}{\mu_0 M_s d} + H + M_s \right) .$$ \hspace{1cm} (4)
The optical mode has a higher resonance frequency than the acoustic mode from the contribution of an additional effective exchange field $2J/\mu_0 M_s d$. And the resonance frequency of the optical mode can be shifted by the change of the interlayer exchange coupling.

III. ELECTRIC FIELD TUNED MAGNETIC RESONANCE IN MULTIFERROIC HETEROSTRUCTURES

The application of an electric field induces strain in materials. The strain-induced magnetoelectric (ME) interaction was recently demonstrated to be a practical method to tune the magnetic resonance in layered multiferroic heterostructures [8-14]. A comparison of electric field induced resonant field shift in various multiferroic heterostructures is summarized in Table I. A typical experimental configuration is illustrated in Figure 3 (a). FM layers were deposited on a piezoelectric substrate, such as Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_3$–PbTiO$_3$ (PMN-PT) and Pb(Zn$_{1/3}$Nb$_{2/3}$)O$_3$–PbTiO$_3$ (PZN-PT). The magnetic resonance was detected by microwave transmission. In the presence of an electric field, the piezoelectric substrate will strain the FM layers, which introduces an effective anisotropy field due to the magnetostrictive effect. The largest strain-induced effective magnetic field of 3500 Oe was achieved in terfenol-D/PZN-PT [6] because of the high magnetostriction of terfenol-D. However, the ferromagnetic resonance (FMR) linewidth was also large indicating enormous loss. Besides the magnetostrictive effect, the change of interlayer exchange coupling may also contribute to the shift of resonance frequency, because the exchange coupling will be affected by the strain. We deposited Co$_{10}$Fe$_{90}$(40nm)/Ni$_{80}$Fe$_{20}$(40nm) on PZN-PT(011). We observed an effective magnetic field of 820 Oe when we applied a bias electric field as shown in Figure 3 (b) and (c). The effective magnetic field is also known as the tunable magnetic field or the electric field induced magnetic anisotropy field (ΔH). The control sample with a single CoFe layer on PZN-PT shows a smaller effective magnetic field of 600 Oe. The 220 Oe difference is due to the change of interlayer exchange coupling. Therefore, the interlayer exchange coupling is not efficiently tuned by strain. A much more effective controlling method is demonstrated in the next section.

IV. GIANT RESONANCE FREQUENCY TUNABILITY USING EXCHANGE COUPLING

To efficiently tune the resonance frequency of the optical mode, one can adjust the interlayer exchange coupling J by engineering the interface. A tantalum (Ta) spacer layer was deposited in between two FM layers. The interlayer exchange coupling can be adjusted by the thickness of the Ta layer. Although the magnetization precessions of the two magnetic layers are out-of-phase at the optical mode, it is still suitable for the application of spintronics microwave devices, because the ferromagnetic layer near the nonmagnetic/insulator interface governs the performance of the devices [9]. We use a spin valve based microwave detector to demonstrate the effect of the optical mode on microwave detection. As shown in Figure 4 (a), the detector is a strip of spin valve (SV), in which the free magnetic layer is composed of an exchange coupled ferromagnetic bilayer with a discontinuous nonmagnetic layer of varying thickness in between to tune the strength of exchange coupling, Cu(2nm)/Co$_{10}$Fe$_{90}$(4nm)/Ta(0.4-2.0nm)/Ni$_{80}$Fe$_{20}$(4nm)/Cu(3nm)/Co$_{10}$Fe$_{90}$(4nm)/IrMn(15nm)/Ta(5nm). The SV is patterned as a part of a coplanar waveguide (CPW), which guides microwave fields into the SV detector. The microwave magnetic field excites the acoustic mode as well as the optical mode in the bilayer. The precession of the magnetization in the bilayer results in an SV with ac resistance that rectifies the microwave field and generates a dc voltage analogous to the spin-torque diode microwave detectors [7]. In this case, only the NiFe layer that is adjacent to the 3 nm Cu layer contributes to the resistance change in the SV. The dc voltage is proportional to the microwave power and attains a maximum value at the acoustic mode and the optical mode resonances.
The measured voltage peaks corresponding to the acoustic mode and the optical mode with opposite phase are shown in Figure 4(b). By varying the thickness of the discontinuous Ta spacer layer, the resonance frequency due to the optical mode can be shifted from 5 GHz to 25 GHz as shown in Figure 4(c). The corresponding effective field change is 4000 Oe, which is much larger than the strain-induced effective field listed in Table I. The magnitude of the resonance peaks scale inversely with the resonance frequency following the nature of magnetic resonance, as shown in the inset of Figure 4(c). For in-situ tuning of interlayer exchange coupling, one can replace the Ta spacer layer with a phase transition material, such as NiCu alloy, which is sensitive to temperature or mechanical strain [8].

Figure 4. - (a) Experimental setup of the spin valve-based microwave detector. (b) Rectified voltage response to the microwave input at various frequencies. (c) Optical mode and acoustic mode frequencies with respect to Ta layer thickness. The inset shows that voltage sensitivity is inversely proportional to the frequency. Here the acoustic mode is used to calibrate the input microwave power.

V. Conclusion

We have demonstrated a technique to significantly enhance the ferromagnetic resonance frequency by evoking the exchange mode in magnetic bilayers. The ferromagnetic exchange coupling in magnetic bilayers enables extremely wide frequency tuning range. We report a technique to shift the magnetic resonance frequency as high as 20 GHz in CoFe based microwave spintronics devices, which is 10X higher than conventional techniques. Such a wide tuning range is normally not achievable with applying an external magnetic field or by other known tuning methods. Although the demonstrations are done with thin film structures, which are already applicable to a plethora of spintronics devices, the concept can be extended to thick materials with multiple layers, creating new avenues for magnetic materials based microwave devices.

Table I. - Comparison of electric field induced magnetic anisotropy field (ΔH) and magnetoelectric coupling coefficient (ΔH/ΔE) in various multiferroic heterostructures

<table>
<thead>
<tr>
<th>Structure</th>
<th>ΔH (Oe)</th>
<th>ΔH/ΔE (Oe cm kV⁻¹)</th>
<th>Linewidth</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoFe/NiFe/PZN-PT</td>
<td>820</td>
<td>126</td>
<td>170 Oe @ 14.5 GHz</td>
<td>This study</td>
</tr>
<tr>
<td>CoFe/PZN-PT</td>
<td>600</td>
<td>96</td>
<td>90 Oe @ 13 GHz</td>
<td>This study</td>
</tr>
<tr>
<td>Terfenol-D/PZN-PT</td>
<td>3500</td>
<td>580</td>
<td>1200 Oe @ 9.3 GHz</td>
<td>[6]</td>
</tr>
<tr>
<td>NiFe/PMN-PT</td>
<td>375</td>
<td>60</td>
<td>50 Oe @ 9.5 GHz</td>
<td>[9]</td>
</tr>
<tr>
<td>FeCoHf/PZN-PT</td>
<td>500</td>
<td>82</td>
<td>25 Oe @ 11.85 GHz</td>
<td>[10]</td>
</tr>
<tr>
<td>FeGaB/PMN-PT</td>
<td>330</td>
<td>33</td>
<td>50 Oe @ 9.5 GHz</td>
<td>[11]</td>
</tr>
<tr>
<td>FeGaB/PZN-PT</td>
<td>750</td>
<td>94</td>
<td>50 Oe @ 9.6 GHz</td>
<td>[12]</td>
</tr>
<tr>
<td>FeO/PZN-PT</td>
<td>600</td>
<td>100</td>
<td>400 Oe @ 9.3 GHz</td>
<td>[13]</td>
</tr>
<tr>
<td>YIG/PMN-PT</td>
<td>40</td>
<td>5.4</td>
<td>6 Oe @ 9.3 GHz</td>
<td>[14]</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENT

The University of Delaware authors acknowledge the support that they have received from the NASA EPSCoR Program under contract number NNX11AQ29A.

REFERENCES

