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An enhancement to the pressure decay leak rate method with mass point analysis solved 

deficiencies in the standard method. By adding a control system, a constant gas pressure 

differential across the test article was maintained. As a result, the desired pressure condition 

was met at the onset of the test, and the mass leak rate and measurement uncertainty were 

computed in real-time. The data acquisition and control system were programmed to 

automatically stop when specified criteria were met. Typically, the test was stopped when a 

specified level of measurement uncertainty was attained. Using silicone O-ring test articles, 

the new method was compared with the standard method that permitted the downstream 

pressure to be non-constant atmospheric pressure. The two methods recorded comparable 

leak rates, but the new method recorded leak rates with significantly lower measurement 

uncertainty, statistical variance, and test duration. Utilizing this new method in leak rate 

quantification, projects will reduce cost and schedule, improve test results, and ease 

interpretation between data sets. 

Nomenclature 

a0  = zero-order regression coefficient 

a1  = first-order regression coefficient 

an  = n
th
-order regression coefficient 

β  = bias error 

i, k  = indices 

m  = mass 

��   = mass leak rate 

N  = number of samples 

p  = absolute pressure 

φ  = precision error 

R  = specific gas constant 

ρ  = correlation coefficient 

T  = temperature 

t  = time 

U  = uncertainty 

V  = volume 
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I. Introduction 

Elastomer gas pressure seals have long been used to confine breathing air inside space vehicles,
1
 with silicone 

compounds predominantly utilized for their temperature performance and reusability.
2
 Unfortunately, silicone seals 

have a high relative leak rate due to the compound’s permeability.
2-4
 The overall leak rate rises even further when 

the sealing surface is degraded from on-orbit atomic oxygen impingement,
4-7
 ultraviolet radiation exposure,

4
 

micrometeoroids and orbital debris impacts,
8,9
 and foreign object debris and lunar dust contamination.

10-12
 

As the leak rate performance of the gas pressure seals dictates the quantity and weight of resources required to 

replenish breathing air, lengthy and costly developmental programs are undertaken for each seal design considered 

for use in space. These research efforts quantify the leak rate within the seal’s anticipated operational envelope to 

determine the conditions of maximum leak rate and the leak rate at common operational conditions. Since multiple 

tests may be conducted to achieve statistical significance or to reduce experimental uncertainty, large quantities of 

leak rate tests are often required as demonstrated in numerous studies.
13,14

 

Using the “test as you fly” philosophy in designing development programs, it is desirable to determine the leak 

rate of air through the test article. Reducing margins by utilizing test methods with quantifiable and low 

measurement uncertainty may be of interest. While technical considerations should be the main factors in choosing a 

leak rate quantification method, a method’s hardware cost may become important when budgets are limited. To 

reduce project schedule and manpower cost, minimizing a test’s duration is often desirable. 

Many acceptable methods exist for measuring leak rates of various magnitudes.
15,16

 For seals used in space 

habitat applications, two methods are most typically used depending upon the size of the leak and the gas to be 

measured. One method is the pressure decay method with mass point leak rate analysis.
17
 The test apparatus consists 

of a hermetically sealed volume of gas, except for the test article. The apparatus is pressurized with an ideal gas and 

is allowed to leak through the test article. The gas pressure and temperature are recorded over time. The mass of gas 

within the system is calculated using the ideal gas law. The mass of the gas is calculated at an arbitrary number of 

time-steps yielding a mass-time data set (ti,mi). A best-fit line to the data is computed using a linear least-squares 

regression centered about the differential pressure of interest. The first-order coefficient of the best-fit line 

represents the leak rate of the test article. 

The pressure decay method with mass point leak rate analysis may be applied to a wide range of leak rates, and a 

reasonable measurement uncertainty can be achieved.
18
 The method utilizes low cost equipment, mainly temperature 

and pressure measurement devices, and any ideal gas of interest may be characterized. The high-pressure side of the 

test article includes an internal volume of gas while the low-pressure side may be an applied vacuum. A more simple 

apparatus configuration allows laboratory pressure to be downstream of the test article, though the analysis becomes 

more complicated when the barometric pressure varies. Though the method takes temperature into account by using 

the measurement in the computation, the method remains temperature sensitive. The temperature used in the 

calculations must accurately represent the gas temperature, which may be challenging to accomplish. The duration 

of the leak test using the pressure decay method may vary depending upon the combination of test article leak rate 

and the size of the internal volume. 

The other commonly used leak rate quantification method is the helium (or other tracer gas) leak detector 

method. Using this method, the apparatus is pressurized with helium on the interior of the test article. The 

low-pressure side of the test article is vacuum pressure and is connected to a leak detector (i.e., mass spectrometer). 

The gases that are transported past the test article are electrically charged in the detector. The detector’s mass 

spectrometer associates the abundance of tracer gas ions with a volumetric flow rate of helium. The leak rate from a 

helium leak detector test is reported in volumetric flow rate of helium which has to be converted to mass flow rate of 

air for application to space habitat seals; the conversion process is not constant, nor trivial, as it is dependent upon 

the geometry of the leak paths within the test article. This test technique can provide excellent results for very small 

volumetric flow rates, but becomes impractical for large flow rates as the pressure at the mass spectrometer must be 

approximately 10 mtorr or below. This impracticality includes situations when the size of the seal becomes too 

great, as the leak rate increases linearly with seal length for seals of identical geometry and material (e.g., O-rings). 

The tracer gas leak detector method requires expensive equipment and properly trained personnel. The detector 

calibration process should be completed during every test trial and extends the length of the test, but the test duration 

is not necessarily lengthy. 

Both commonly used leak rate methods have potential advantages and drawbacks when used to develop space 

seal performance data. Until now, there was no method that had all of the desired attributes: capability to quantify 

small and large leak rates, assign a reasonable level of uncertainty, utilize air as the test gas, and maintain short test 

durations with leak rates and associated uncertainty calculated in real-time. This paper describes a novel method to 



quantify the leak rate of seals for space application that minimizes development cost and schedule. The method 

shortens otherwise long duration tests, utilizes low-cost hardware and instrumentation so it can be replicated in 

multiple test stands, has quantifiable and controllable measurement uncertainty, and requires no data 

post-processing. Advantages of the enhanced method are highlighted herein with a comparison of silicone O-ring 

seal leak rates quantified using the new system to rates obtained through application of the standard mass point leak 

rate method with uncontrolled downstream pressure. 

II. Description of the test method 

The new test method was similar to the 

standard pressure decay method with mass point 

leak rate analysis, but with one significant 

enhancement. A control system was used to 

maintain the desired pressure differential across the 

test article throughout the test by raising or 

lowering the downstream pressure. This 

enhancement, while seemingly small, made 

substantial changes to the application of the 

method. 

Similar to a standard pressure decay-type leak 

rate measurement system, the test apparatus 

consisted of a hermetically sealed volume of gas, 

except for the test article whose leak rate quantity 

was of interest. The apparatus was pressurized with 

the test gas and was allowed to leak past the test 

article. The low-pressure region, previously a 

constant or uncontrolled barometric pressure when 

the standard method was employed, was controlled such that a differential pressure across the test article was 

maintained at the desired constant value throughout the test. This differential pressure was measured using a 

differential pressure transducer of suitable range, see Fig. 1. As the pressure of the high-pressure region decreased 

due to leakage past the test article, the pressure in the low-pressure region was reduced by a similar value to 

maintain the constant differential pressure, as illustrated in Fig. 2. This eliminated the potential for exceedingly long 

test duration due to a disproportionately low leak rate for the system, see Fig. 3(A), wherein the differential pressure 

would never meet the target. It also extended the test duration for tests of high leak rate test articles, see Fig. 3(B), 

 
Figure 1. Schematic of the test apparatus. 

  
Figure 2. Illustration of pressure behavior of the 

high- and low-pressure sides of the test article. 

Figure 3. Illustration of the intended performance of 

the constant differential pressure leak rate system 

compared with that of the standard system. 
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thereby allowing for improved measurement uncertainty. A constant differential throughout the duration of the test 

resulted, see Fig. 3(C). 

A controller managed the activity of the pressure regulator. The input value from the differential pressure 

transducer was compared to the desired set point. Using a proportional-integral control algorithm, the controller sent 

a voltage signal to the pressure regulator, with connections to both an ambient pressure vent and vacuum, to raise or 

lower the downstream pressure as appropriate to obtain the desired pressure differential across the test article. 

The gas pressure and temperature within the high-pressure side volume were recorded over time. Using Boyle’s 

law, the volume was quantified in advance.
19
 Similar to the standard pressure decay method with mass point leak 

rate data analysis and uncontrolled downstream pressure, the ideal gas law was assumed and the mass of gas within 

the system was calculated using Eqn. 1 for each time-step yielding a mass-time data set (ti,mi). 

RT

pV
m =

 

(1) 

Since the differential pressure across the test article was the desired value throughout the duration of the test, a linear 

least-squares regression was computed for the entire data set using Eqn. 2. 
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The uncertainty of mass loss was calculated
17
 using the generalized Eqn. 3. 
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(3) 

Applying the assumption that any error in the time measurement was negligible (�	�= 
	�
=0) and utilizing 

correlation coefficients (�����
= 0)		that produced the maximum uncertainty17, Eqn. 3 simplified to Eqn. 4. 
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Whereas the standard analysis method calculates the leak rate using Eqn. 2 after the test has concluded, the 

enhanced method is capable of computing the leak rate and associated uncertainty (using Eqns. 2-5) at each time 

step in real-time. 

III. Experimental hardware setup 

To compare the performance of the enhanced and standard leak rate methods, similar experimental test setups 

were used to measure the leak rates of a series of similar test articles.  The test hardware is described below. 

A. Test installation 

The test section used with the enhanced test method was comprised of two test platens manufactured from 

stainless steel, each with surface roughness better than 0.4 µm. The test article was installed into a standard O-ring 

groove
2
 in the bottom platen and compressed against the flat surface of the top platen, Figs. 4 and 5. The platens 



were assembled such that each test article was compressed by 25% of its nominal height. The test gas used was dry 

air and was supplied to the test article’s interior from the high-pressure side of the apparatus at approximately 

124 kPa. During testing with the enhanced method, the control system reduced the pressure on the low-pressure side 

of the apparatus until the pressure differential across the seal was 101 kPa. 

The mass loss calculations were computed by the data acquisition and control system using gas properties on the 

high-pressure side of the test apparatus and Eqns. 1 and 2. The gas pressure was monitored using two pressure 

transducers. The average of the two readings at each time step was used in the computations. The temperature was 

monitored using a Class A accuracy resistance temperature detector (RTD) attached to the external surface of the 

volume, see Fig. 1. The volume of the high-pressure side was determined using an average of 248 applications of 

Boyle’s law (i.e., p1V1 = p2V2). The size of the volume was approximately 70.59 ml for each of the three test setups 

used to collect the data. 

The bias and precision errors used in Eqn. 5 were unique to each of the three test apparatus used during the 

study. Each error was obtained using each instrument’s calibration records (e.g., pressure transducers), product 

specifications (e.g., RTD), or computations (e.g., the volume). A table of representative values is presented for the 

reader’s understanding in Table 1. 

To minimize differences between the temperature measurements and the actual gas temperature, the test section, 

pressure transducers, volume, RTD, and hermetic valve were contained within an environmental control chamber. 

The intended test temperature was 23°C. 

The test section used to implement the standard method was very similar to the hardware used with the enhanced 

method; however, there were some key differences. Instead of being connected to the control system, the low-

pressure port was vented to the ambient laboratory environment and the vacuum seal was removed. In this 

configuration, air leaked past the test article directly into 

the ambient laboratory environment. To achieve the same 

nominal pressure differential across the test article created 

using the enhanced method, the high-pressure air supply 

used with the standard test method was increased to 

approximately 200 kPa. The system was allowed to leak, 

lowering the pressure differential, until 101 kPa was 

achieved. The similar pressure differential across the test 

article facilitated a comparison of leak rate results for 

replicate seals evaluated using the two respective test 

methods. 

B. Test articles 

Table 1. Representative values of bias and 

precision errors. 
 

Instrument Bias 

error 

Precision 

error 

Pressure transducer 26 Pa 9.7 Pa 

RTD 0.196°C 0.022°C 

Volume 2.131 ml 0.392 ml 
 

Table 2. Nominal dimensions of the test articles. 
 

Inner diameter, mm Thickness, mm 

10.5 ±0.127 5.33 ±0.127 
 

 

 

 

 
Figure 4. Diagram of the test section cross-section. Figure 5. Diagram of the test section. 



The test articles were standard AS568A size 2-309 O-rings manufactured from S0383-70 silicone elastomer 

compound by Parker Hannifin Corporation. The nominal dimensions of the specimens are shown in Table 2. The 

samples were cleaned with isopropyl alcohol and allowed to air dry. They were tested in an as-manufactured state, 

without protectant or lubrication applied. Six test articles were evaluated using the enhanced method, and six test 

articles were evaluated using the standard method for comparison. 

C. Data acquisition system 

A computer-based data acquisition system collected the pressure and temperature measurements at a rate of 

approximately 10 Hz. When implementing the enhanced method, pressure and temperature measurements were 

combined with the previously quantified volume to compute the mass of gas at each time-step. The history of mass 

computations was used to compute the leak rate and its associated uncertainty in real-time throughout the duration of 

the test. The software allowed the system to run continuously as long as the pressure differential did not decrease by 

6.9 kPa due to insufficient high-pressure side gas supply. The test continued until the mass loss measurement 

uncertainty was below 10%, with a minimum duration of five minutes and a maximum of 24 hours. 

When implementing the standard method, pressure and temperature measurements were collected at similar 

sample rates. The system was allowed to run until the operator estimated sufficient data was collected. Finally, the 

leak rate and associated uncertainty were computed after the test was completed. 

IV. Results and discussion 

The mass of dry air, leak rate, and measurement uncertainty for a typical test article evaluated using the 

enhanced method are shown in Figs. 6 and 7. The characteristics of these curves were typical, but values were 

dependent upon the instruments used, their bias and precision errors, the specimen leak rate, the stability of the 

temperature, and the volume size. The main feature of this enhanced test method, the controlled pressure 

differential, was programmed to be 101.35 kPa for each test. During the particular test shown in Figs. 6 and 7, the 

differential pressure oscillated between 101.14 and 101.28 kPa. The small fluctuations were included in each time-

step’s leak rate calculation, but were considered an insignificant influence on the leak rate through the test article. 

During the first hour of the test, the computed value of leak rate varied significantly due to the combination of 

scatter in the pressure and temperature instrumentation measurements and the short time interval, see Fig. 7. 

Unrealistically large and negative leak rate values were common. As expected, the corresponding uncertainties were 

very large due to the large variation in computed leak rate. As the test continued, the loss of mass in the volume and 

the time duration became more significant than the scatter, and the measurement uncertainty was reduced. It should 

be noted that the leak rate for the test article was assumed to be constant during the course of the experiment, only 

the computed value of leak rate changed. 

  
Figure 6. Typical mass response. Figure 7. Typical response of leak rate calculation 

and measurement uncertainty. 



Each of the tests was stopped automatically when 

the uncertainty was below 10% of the leak rate. The 

leak rates of six replicate test articles were determined, 

see Fig. 8. The result was an average leak rate of 

3.27x10
-12
 kg/s. The standard deviation, which 

quantifies the dispersion of measurements, was 

0.68x10
-12
 kg/s. The test durations ranged from 10 to 

18 hours. 

The level of measurement uncertainty at which to 

stop was arbitrarily set to 10%. Other acceptable levels 

could have been chosen which would have resulted in 

different test durations, see Table 3. 

The data collected for the six additional replicate 

test articles used to compare the leak rate results of a 

standard uncontrolled pressure mass point leak rate 

system required extensive manual post-processing, as 

described in Ref. 17.  During the post-process 

calculation of leak rate, the largest interval of data was 

utilized that was (a) centered about the differential 

pressure of 101.4 kPa, and (b) did not exhibit 

significant curvature in the mass-time data set.
17
 This 

generally produces the smallest (and most desirable) 

value of measurement uncertainty. The results for 

those six tests are plotted in Fig. 9. The mean of 

calculated leak rates was 3.63x10
-12
 kg/s with a 

standard deviation of 1.61x10
-12
 kg/s. The test 

durations ranged between 45 and 65 total hours. Since 

the desired pressure differential (101.4 kPa) was not 

met during most of the test, between three and 

10 hours of data was used for the leak rate 

computations. The data recorded before and after was 

discarded. The resultant measurement uncertainties 

were between 23 and 82%. 

Upon comparing the variation in the seal leak rates 

determined using the two individual systems, it was 

noted that measurement standard deviation was 

decreased by approximately half through 

implementation of the enhanced method to control the 

pressure differential across the test article. When the 

enhanced method was used, test duration was reduced 

such that one test per work day could be completed, 

compared with one test every two to three days when 

using the standard method. In addition, measurement 

uncertainty was controlled and greatly improved, by up 

to 88%, in tests where the enhanced method was 

employed. 

When using a system that does not employ a 

downstream pressure controller, the gas leaks past the 

test article and into uncontrolled ambient or constant 

vacuum pressure. The test duration is dictated by the 

time necessary to reach the desired differential 

pressure. The measurement uncertainty is controlled 

by the amount of time the system is near the desired 

differential pressure. This time may be very short for 

high leak rate test articles and for periods of rising 

barometric pressure, as illustrated in Fig. 3. This time 

 

Figure 8. Leak rates of test articles using controlled 

pressure differential test system. Error bars represent 

measurement uncertainty of each trial computed 

individually using Eqns. 3-5. 
 

Measurement 

uncertainty, % 

Test 

duration, h 

30 5.9 

20 7.9 

10 13.4 

Table 3. Measurement uncertainty and typical 

corresponding test duration. 

 

Figure 9. Leak rates of test articles using standard 

uncontrolled pressure mass point leak rate method. 

Error bars represent measurement uncertainty of each 

trial computed individually using Eqns. 3-5. 
 



may be very long for low leak rate test articles and for periods of falling atmospheric pressure. In an unfortunate 

situation, the leak rate may be similar to the falling barometric pressure and the system may “chase” the desired 

differential pressure for days. 

By utilizing a controller and maintaining the desired pressure differential, all the data acquired was available to 

compute the test article’s leak rate. The test duration was predominantly dependent upon the desired measurement 

uncertainty; however, leak rate and high-pressure side volume size were very important. Controlling the 

measurement uncertainty eased data interpretation as each test was run until the same uncertainty was obtained. The 

appearance of the data conveyed confidence that the experiments were well controlled, since the error bars were 

similar in magnitude, as in Fig. 8. The comparison between data sets as data points was also eased as each datum 

point was afforded equal weighting. This may not be the case for data with disproportionately large measurement 

uncertainty, (e.g., sample 11 in Fig. 9). 

V. Conclusions 

A new method to quantify the leak rate of a silicone elastomer test article for space application was presented. 

An enhancement to the standard pressure decay method with mass point leak rate analysis was made by adding a 

differential pressure control system. The addition of a control system provided a constant pressure differential across 

the test article by raising or lowering the downstream gas pressure, as appropriate. The test duration was not 

extended waiting for the desired pressure differential to occur. As a result, the mass leak rate and measurement 

uncertainty were computed in real-time. The overall test duration was greatly reduced as the test was programmed to 

automatically stop when specified criteria were met; most importantly, the test was stopped when a predefined level 

of measurement uncertainty was met. The method with enhancement was compared with a method that permitted 

the downstream pressure to be uncontrolled atmospheric pressure by measuring the leak rate of AS568A size 2-309 

silicone O-rings. Similar leak rate values were computed from both methods. When compared to the results of the 

standard method, the results computed by the new method had significantly lower measurement uncertainty, 10% 

compared to 23-82%; lower standard deviation, 0.68 x10
-12
 kg/s compared to 1.61x10

-12
 kg/s; and shorter test 

duration, a single day compared with two to three days. Implementation of this enhanced leak rate method into 

developmental spaceflight programs may lead to reduced project schedule and cost while improving the quality and 

reliability of the obtained data. 
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