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Introduction

 James Webb Space Telescope (JWST)
 Contains four large instruments within an enclosure 

incorporating some blanketed walls
 Only vents through small aperture during ascent
 Other venting would risk light leaks
 Blankets limit allowable overpressure

 Electronics compartment on shadowed side also requires 
limited overpressure due to multi-layer insulation blankets

 Useful to develop expressions in this limit to help design 
process
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Objective

 Develop expressions in small disturbance limit for simple 
venting systems
 Common conductance elements

 Orifices
 Ducts

 Mass conservation statement
 Explore some limits for practical application
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Mass Conservation Statement

 Mass accumulation rate
 Mass generation rate 

within volume rigid V
 Net rate vented across 

bounding surface S
V

S
genm

∫∫∫∫∫ ⋅−=
SV

mdV
dt
d dSuρρ gen
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Mass Conservation Development

 Assume isothermal, ideal gas with constant properties 
throughout V
 Recast statement in terms of gas load Q

 In this case, can say venting occurs across a discrete set of 
elements K, define conductance F

∫∫ ⋅−=
S

pRTm
dt
dpV dSugen
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Orifice Conductance

 For a calorically perfect gas in continuum flow

 Rewrite in terms of fairing pressure p2 and pressure differential

 For small pressure differentials:
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Circular Duct Conductance

 Begin with Hagen-Poiseuille solution for average velocity 
in fully-developed, laminar flow
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Conductance Comparisons
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Small Disturbance Solution

 For a single venting element

 If conductance not a function of pressure, would identify a 
time constant τ = V/F

 In terms of ∆p, p2

 Since p1 is close to p2 over all time, can neglect second 
time derivative
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Small Disturbance Solution

 Grouping known quantities together

 What was a first-order differential equation has been 
reduced to an algebraic expression!

 Find solutions for ∆p using orifice and duct behavior

.2
21 dt

dpVpF −≈∆−
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Limiting Orifice Behavior

 Substitute small disturbance equation for orifice
 Solving for ∆p

 Identical to solution developed intuitively by Scialdone!
 Highest value occurs where last term is maximized
 Usually occurs during transonic disturbance period
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Comments on Scialdone Formula

 Scialdone modified the orifice area by using a discharge 
coefficient
 Based on what was originally an ASTM description for orifice 

plates within pipes
 This author has not found this coefficient to be necessary 

when comparing against test data
 Original development recognized use of small disturbance 

assumptions, but created a time constant based on 
molecular flow and sonic conditions
 Sonic conditions definitely violate small disturbance limit
 Assumptions lead to minimum critical areas that are too large

 Run up against thermal, optical, high-voltage restrictions
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Limiting Duct Behavior

 Circular duct solution

 Note differences from orifice solution
 Difference dependence on fairing depressurization rate
 Lower dependence on volume
 Presence of dynamic viscosity, duct length emphasize viscous 

rather than gasdynamic effects
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Critical Reynolds Number

 Laminar flow condition violated when duct Re > 2000 – 4000
 Work with definition of Reynolds number and duct mass flow 

expression in small pressure disturbance limit to find

 Stubby ducts allow higher flow rates at constant diameter, but 
may also lead to turbulent conditions
 If aspect ratio is stubby enough, the element may behave more like an 

orifice instead!
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Concluding Remarks

 Overpressure model developed for isothermal, constant 
temperature venting of an ideal calorically perfect gas for a 
rigid volume in the presence of an external driving pressure, 
in the limit of small ∆p

 Limiting expressions for ∆p were developed for venting 
across orifices and circular ducts in fully developed, laminar 
flow
 Orifice equation identical to Scialdone’s, discussed how limits 

should be understood
 Duct equation exhibits viscous effects, different dependence on 

driving pressure profile, found limit on validity based on critical 
Reynolds number
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