NIAC (NASA Innovative Advanced Concepts)

Phase 1 & 2 Studies (2011 – 2014)

An Innovative Solution to NASA's NEO Impact Threat Mitigation Grand Challenge and Flight Validation Mission Architecture Development

Bong Wie (PI)
Asteroid Deflection Research Center
Iowa State University

Brent Barbee (Co-I)
NASA Goddard Space Flight Center

Graduate Students: Alan Pitz, Brian Kaplinger,
Matt Hawkins, Tim Winkler, Pavithra Premaratne,
George Vardaxis, Joshua Lyzhof, Ben Zimmerman
NIAC Study Objective (2011 – 2014)

To develop an innovative yet practically implementable mitigation technique for the most probable impact threat of an asteroid or comet with short warning time (i.e., when we don’t have sufficient warning times for a deflection mission)
NIAC Phase 1 Proposal (2011)

- Late intercept missions, with short warning time < 1 yr, will result in a hypervelocity arrival closing (relative) velocity of 5 to 30 km/s.
- \(\Delta V = 10 \) km/s requires a 96% propellant mass (300-s Isp)
- \(\Delta V = 30 \) km/s requires a 99.99% propellant mass ratio
- Impact velocity of nuclear explosive devices (NEDs) is limited as 300 m/s max (2005 NRC Report on NEPWS)
Terminal Guidance Begins

Impact - 2 hrs
for 50- to 150-m target

Target Acquisition

Cameras identify target NEO

Deployment of 10-m boom with contact fuzes and sensors

Launch Vehicles

- Delta IV Heavy
 1500 kg NED
 \(\approx 2 \text{ Mt yield} \)

- Delta IV M+
 1000 kg NED
 \(\approx 1 \text{ Mt yield} \)

- Delta II Class
 300 kg NED
 \(\approx 300 \text{ kt yield} \)
Asteroid Deflection Research Center

NASA Innovative Advanced Concepts

IOWA STATE UNIVERSITY

Asteroid Deflection Research Center

2006 NEO Report by NASA
2010 NEO Report by NRC

NIAC Phase 1 & 2 Studies

Disruption
Pulverization/Vaporization

Deflection

Civil Defense

Warning Time (Years)

Build and Launch

Ready to Launch

Nuclear

10000

1000

20

10

1

2

5

10

20

50

100
NIAC Project Outcomes (1/2)

• The Hypervelocity Asteroid Intercept Vehicle (HAIV) mission concept of blending a kinetic impactor with nuclear subsurface explosion

• 7 journal articles + 30 plus technical papers

• 3 Ph.D. (graduated) + 3 MS (graduated) + 3 Ph.D. (current)

• The HAIV mission concept should further exploit the ATLAS last alert system for active last-minute planetary defense (1 week – 3 weeks)
ATLAS Last Alert System
(Asteroid Terrestrial-Impact Last Alert System)

- A $5M project started in 2013 (due to the Chelyabinsk event)
- The ATLAS is currently scanning the sky with a prototype camera and telescope, and will be fully operational in 2015-2016.
- So far, only for civil defense (evacuation)
- One-day alert for a 8-m, 30-kt “town killer”
- One-week alert for a 45-m, 5-Mt “city killer”
- Three-week alert for a 140-m “county killer”

An early ATLAS design concept.
• If a HAIV/IPBM system (≈ $200M- $500M) becomes ready to launch at anytime in the future,

✓ Given one-week warning from the ATLAS, an asteroid (> 45 m) can be intercepted/fragmented far outside the orbit of moon.

✓ Given three-week warning from the ATLAS, an asteroid (> 140 m) can be intercepted/fragmented far outside Earth’s gravitational field.

• Note that ALL other “non-nuclear deflection” options will require much earlier warning of at least 10 to 20 years.
Suborbital Nuclear Intercept/Pulverization Mission Scenario

Minuteman III
6.6 km/s

20 min
2,500 km

A

4 min

B

C

SM-3 IIA

Asteroid

20 min
2,500 km

AAS-2014-281
AIAA-2014-4460
PDC 2015
HAIV Design by NASA GSFC for a Flight Validation Mission ($500M)

Acta Astronautica
Vol. 106, 2015, pp.139-159
HAIV Design by the Mission Design Lab (MDL) of NASA Goddard Space Flight Center

Spacecraft Bus with NED Payload

10-m AstroMast Deployable Boom

Kinetic Impactor

GNC Sensors

Acta Astronautica
Vol. 106, 2015, pp.139-159
tests and a second trajectory correction maneuver. In addition, some initial observa-
tions of comet Tempel 1 will be attempted.

Approach Phase
The approach phase extends from 60 days before to five days before encounter. Sixty
days out roughly coincides with the earliest time that the team expects the spacecraft
to be able to detect comet Tempel 1 in its high-resolution camera. This milestone
marks the beginning of an intensive period of observations to refine knowledge of the
comet's orbit. Regular scientific observations will be used to study the comet's rotation,
activity and dust environment.

Comet Encounter
The encounter phase begins five days before and ends one day after the impact with
comet Tempel 1. This brief but very intense period includes two final targeting maneu-
vers, leading up to release of the impactor and its dramatic collision with the comet's
nucleus. After releasing the impactor, the flyby spacecraft will execute a deflection
maneuver so that it does not also collide with the comet; the maneuver will also slow it
down enough to make observations after the impact and before flying past the nucleus.

Table 5. Preliminary launch window.
<table>
<thead>
<tr>
<th>Launch date</th>
<th>Earth departure</th>
<th>Relative velocity at intercept (km/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019-07-21</td>
<td>22.48</td>
<td>13.4</td>
</tr>
<tr>
<td>2019-08-02</td>
<td>11.99</td>
<td>11.5</td>
</tr>
<tr>
<td>2019-08-12</td>
<td>8.44</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Table 6. Maneuver schedule and v budget.

<table>
<thead>
<tr>
<th>Maneuver</th>
<th>v (m/s)</th>
<th>Time Correction</th>
<th>v Error (%)</th>
<th>v Error (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM 1</td>
<td>26.0</td>
<td>Launch vehicle insertion (3)</td>
<td>10</td>
<td>2.6</td>
</tr>
<tr>
<td>TCM 2</td>
<td>2.8</td>
<td>TCM 1 error</td>
<td>5</td>
<td>0.140</td>
</tr>
<tr>
<td>TCM 3</td>
<td>0.3</td>
<td>TCM 2 error</td>
<td>5</td>
<td>0.015</td>
</tr>
<tr>
<td>TCM 4</td>
<td>0.2</td>
<td>TCM 3 error</td>
<td>5</td>
<td>0.010</td>
</tr>
<tr>
<td>TCM 5</td>
<td>0.3</td>
<td>TCM 4 error</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>TGM 1</td>
<td>3.1</td>
<td>I - 90 min Nav and TCM 5 error</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TGM 2</td>
<td>0.4</td>
<td>I - 35 min Nav and TGM 1 error</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TGM 3</td>
<td>0.5</td>
<td>I - 13 min Nav and TGM 2 error</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TGM 4</td>
<td>3.5</td>
<td>I - 60 secs Nav and TGM 3 error</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total v</td>
<td>37.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 10. Ecliptic plane projection of the Earth's orbit (blue), the orbit of 2006 CL
9 (violet), and the HAIV intercept
trajectory (green).
Hypervelocity Asteroid Intercept Vehicle (HAIV) Interplanetary Ballistic Missile (IPBM) Concept
Pulverization and Dispersion of a 300-m Asteroid with a 30-day Warning Time

Educational Use Only

14 Mar 2036 01:00:00.000 Time Step: 3600.00 sec
ATLAS Last Alert

3-week (> 140 m) “Ready to Launch” (Interplanetary)

1-week (> 45 m)

1 day – 1 wk “Ready to Launch” (inside/outside lunar orbit)

NASA Innovative Advanced Concepts

IOWA STATE UNIVERSITY

16
Thank You!