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Acronyms
• Application specific integrated circuit (ASIC)
• Block random access memory (BRAM)
• Block Triple Modular Redundancy (BTMR)
• Clock (CLK or CLKB)
• Combinatorial logic (CL)
• Configurable Logic Block (CLB)
• Digital Signal Processing Block (DSP)
• Distributed triple modular redundancy 

(DTMR)
• Edge-triggered flip-flops (DFFs)
• Equivalence Checking (EC)
• Error detection and correction (EDAC)
• Field programmable gate array (FPGA)
• Gate Level Netlist (EDF, EDIF, GLN)
• Global triple modular redundancy (GTMR)
• Hardware Description Language (HDL)
• Input – output (I/O)
• Linear energy transfer (LET)
• Local triple modular redundancy (LTMR)
• Look up table (LUT)

• Operational frequency (fs)
• Power on reset (POR)
• Place and Route (PR)
• Radiation Effects and Analysis Group 

(REAG)
• Single event functional interrupt (SEFI)
• Single event effects (SEEs)
• Single event latch-up (SEL)
• Single event transient (SET)
• Single event upset (SEU)
• Single event upset cross-section (σSEU)
• Static random access memory (SRAM)
• System on a chip (SOC)
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• Field Programmable Gate Array (FPGA) versus 
Application Specific Integrated Circuit (ASIC) Devices.

• What’s Inside An FPGA?

• FPGAs And Critical Applications.

• Single Event Upsets in FPGA Configuration.

• Single Event Upsets in an FPGA’s Functional Data Path 
and Fail-Safe Strategies.

• Fail-Safe Strategies for FPGA Critical Applications.

Agenda 
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Definitions
• A Field-Programmable Gate Array (FPGA) is a 

semiconductor device containing configurable logic 
components called "logic blocks", and configurable 
interconnects. Logic blocks can be configured to perform 
the function of basic logic gates such as AND, and XOR, or 
more complex combinational functions such as decoders 
or mathematical functions.

• An application-specific integrated circuit (ASIC) is an 
integrated circuit designed for a particular use, rather than 
intended for general-purpose use. Processors, RAM, ROM, 
etc are examples of ASICs.

• An FPGA is made out of an ASIC
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Creating A Design in An Integrated 
Circuit Device (FPGA or ASIC)

• The idea is to describe a hardware 
design using hardware description 
language (HDL):
– Clocks,
– Resets,
– Sequential elements                                

(e.g., flip-flops),
– Combinatorial logic.

• The description gets synthesized into 
a hardware gate-level-netlist (GLN: file 
listing gates and connectivity).

• The synthesized hardware gates are 
mapped and placed into the cell 
library (or logic blocks) of the target 
FPGA or ASIC.
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Design Tools
• Design tools are used for each step of the design process.
• Synthesis: maps HDL into logic blocks (cells) … outputs 

gate-level net-lists.
• Place and route (PR): optimizes where the logic blocks 

and their interconnects should be.
• Synthesis along with place and route tools contain 

optimization algorithms within their tool sets.  
– These algorithms are used to optimize area, power, and logic 

function.
– Tools are difficult and can produce incorrect functional logic.
– Equivalence checking (EC) verifies tool output matches HDL.
– Poorly designed tools can create designs that are too large to fit 

into the target device or output too much power. Hence, produce 
unusable designs.
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ASIC Design Flow
Functional 

Specification
HDL

Synthesis

Behavioral Simulation

STA, EC, and gate-
level Simulation

Physical Design: Hand off to 
back-end design house

Hand off to foundry

STA, and back 
annotated gate-
level Simulation

Wait days 
to weeks

Wait weeks 
to months

Floorplanning, 
clock balancing, 
place and route, 

and timing closure

STA: Static timing analysis
EC: Equivalence checking

HDL: Hardware description language
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User Design 
Flow

FPGA Design Flow

ASIC Design 
Flow

User maps a 
design into 
FPGA circuits

FPGAs are sold 
to users with 
configurable 
logic blocks and 
routes (they do 
not contain 
operable design)

FPGAs are created by manufacturers and are sold to 
users.  The user maps a design into the FPGA fabric.

Manufacturer 
creates FPGA 

design structure: 
logic block cells, 

routing 
structures, 

configurationM
an

uf
ac

tu
re

r

Manufacturer 
sends FPGA 

circuit to foundry FPGA

FPGA

Manufacturer
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FPGA User Design Flow

Create 
Configuration

STA, and back 
annotated Gate Level 

Simulation

Place and Route

Looks like 
ASIC design 
flow … but 
…without the 
wait time

User creates a design 
that is mapped into a 
manufacturer provided 
FPGA

Functional 
Specification

HDL

Synthesis

Behavioral Simulation

STA, EC, and Gate 
Level Simulation

STA: Static timing analysis
EC: Equivalence checking

HDL: Hardware description language
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FPGA or ASIC?
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FPGA and ASIC Devices … System 
Usage

• An FPGA (similarly to an ASIC) can be used to solve 
any problem which is computable:
– User implements a digital (or mixed signal design).
– Design can be trivial glue-logic (e.g., interface control) or 
– Design can be as complex as a system on a chip that may 

include processors, embedded memory, and high speed 
serial interfaces (Gigabit SERDES).

• The number of gates contained within the original 
FPGA devices were too small to compete with the 
ASIC devices of that time (1980s).  
– FPGAs were mostly used as interface glue logic.
– Reduced system cost and added flexibility.

• Modern-day FPGAs contain millions of gates and have 
taken over a significant amount of the ASIC market. 

SERDES: serializer de-serializer
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The ASIC Advantage

ASIC Advantage Comment/Explanation
Full custom
capability

The design is “tailored” and is 
manufactured to design 
specifications (no additional hidden 
logic)

Lower unit costs Great for very high volume projects
Smaller form 
factor

Less logic is required because device 
is manufactured to design specs

No configuration Overall reliability can decrease due to 
the addition of configuration 
technology/logic

Lower power Less logic is required because device 
is manufactured to design specs
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The FPGA Advantage
FPGA Advantage Comment/Explanation
Faster time-to-market No layout, masks or other 

manufacturing steps are needed
No upfront non-recurring 
expenses (NRE)

Costs typically associated with an 
ASIC design 

Simpler design cycle Due to the required tools that handle 
routing, placement, and timing

More predictable project cycle Due to elimination of potential re-spins
and lack of concern regarding wafer 
capacities as it would be in ASICs

Field reprogramability It is easier to change a design in a 
system

Engineer availability More students are taught FPGA design 
in school

FPGA: Faster design cycle and cheaper to implement
14
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What is inside FPGA devices?
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General FPGA Architecture: Fabric Containing 
Customizable Preexisting Logic…User 

Building Blocks
Integrated C

ircuit
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How Do FPGA’s Differ?
• Manufacturer Architecture (not all are listed):

– Configuration,
– User building blocks (combinatorial logic cells, sequential logic 

cells),
– Routing,
– Clock structures,
– Embedded mitigation, and
– Embedded intellectual property (IP); e.g., memories and 

processors.
• Manufacturer design tool environment:

– Synthesis,
– Place and Route, and
– Configuration management output.

Difference in architectures and tools will affect the 
final design and design process – users be aware.
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FPGA Component Libraries: Basic 
Designer Building Blocks (They Differ 

per FPGA Type)

• Combinatorial logic 
(CL) blocks 
– Vary in complexity.
– Vary in I/O.

• Sequential logic blocks 
(DFF) 
– Uses global Clocks. 
– Uses global Resets.
– May have mitigation.
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User Maps the Design Logic into FPGA 
Preexisting Logic

Combinatorial
FPGA 
Equivalent 
Block DFF 

FPGA 
Equivalent 
Block

SynthesisHardware design language (HDL)
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FPGA Configuration (Storage of User 
Design Mapping)
FPGA MAPPING

Configuration Defines:
Arrangement of pre-existing 
logic via programmable 
switches.

Functionality (logic cluster) and
Connectivity (routes)

Programmable Switch 
Types:

Antifuse: One time 
Programmable (OTP),
SRAM: Reprogrammable (RP), 
or
Flash: Reprogrammable (RP).
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Common FPGA Applications
• Controllers,
• Dataflow and interface adaptation,
• Digital signal processing (DSP),
• Software-defined radio,
• ASIC prototyping,
• Medical imaging, 
• Robotic control (vision, movement, speech, etc.,…)
• Cryptology,
• Nuclear plant control, 
• The list goes on…

The following short course presentations will 
provide more details.
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Soil Moisture 
Active Passive 

Spacecube: 
International 
Space Station

Mars Rover

New Horizons 
Pluto and Beyond

Example 1: FPGA Military and Space 
Applications
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Example 2: FPGA Terrestrial Application

Automotive applications that are opening up to FPGA-based solutions:
Navigation and Telematics Displays
Personnel Occupancy Detection Systems (PODS) for Next-Generation Airbags
Blind-Spot Warning System
Engine Control Module
Lane Departure Warning System
Adaptive Cruise Control
Collision Avoidance System
Injector Control (especially diesel engines)
Power Steering Control
Multi-Axis Power Seat Control
Advanced Suspension and Traction Control
Emissions Control
Back-up Sensors
Back-up Camera
Rear-Seat Entertainment Source MUXing
Digital Cluster
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FPGAs and Critical Applications
• Safety: can circuits or 

humans be damaged or 
hurt?

• Reliability : will the device 
operate as expected?

• Availability: how often will 
the system operate as 
expected?

• Recoverability: if the device 
malfunctions, can the 
system come back to a 
working state?

• Can the device and its 
design be trusted (security)

Critical applications will want to 
avoid disaster.
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Sources of FPGA Failure
Negative bias 
temperature 
instability (NBTI) 

dielectric 
breakdown 
(DB)

Hot carrier 
injection (HCI), 

Total ionizing 
dose (TID)

Single event 
effects (SEEs)

Poor design 
choices

Lack of 
verification

Electromigration
(EM)

Environmental 
stress

Packaging and 
mounting

Transistor 
switching stress
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How To Protect A System from Failure
• Investigate failure modes – understand risk:

– Reliability testing (temperature, voltage, mechanical, and logic 
switching stresses).

– Radiation testing: Single event effects (SEE) and total ionizing 
dose (TID).

• Add redundancy:
– Replication with correction.
– Replication with detection.  Requires recovery:

• Switch to another device,
• Try to recover state,
• Start over,
• Alert,
• Do nothing… die.

• Add filtration: e.g., Finite impulse response (FIR) filters 
or Constant false alarm rate filter (CFAR).

• Add masking.
26
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Go no Go: Single Event Hard Faults 
and Common Terminology

• Single Event Latch Up (SEL): Device latches in high 
current state:
– Has been observed in FPGA devices that are currently on the 

market.
– Some missions choose to use the devices and design around 

the SEL.
• Single Event Burnout (SEB): Device draws high 

current and burns out.
– Not observed in FPGA devices that are currently on the 

market.
• Single Event Gate Rupture: (SEGR): Gate destroyed 

typically in power MOSFETs.
• Not observed in FPGA devices that are currently on the 

market.
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Radiation Hardened versus 
Commercial FPGA Devices

• Radiation hardened FPGA devices are available to 
users.  They make the design cycle much easier!

• They are considered hardened if:
• Configuration susceptibility is reduced to an 

acceptable rate.  
• Generally, less than one node per 1x10-8 days.  
• Be careful: with millions of nodes, this can translate 

into 1 or two configuration failures per year.
• However, if the node isn’t being used, then your 

circuit may not be affected by the failure.
• The following presentation will discuss FPGAs with 

embedded mitigation.
• This presentation will focus on user inserted 

mitigation techniques.
28
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Small Device Geometries Enable High Capacity 
Applications but Non-Radiation Hardened 

Devices May Require SEU Mitigation

= SEU Hardened/Harder 
0 1 2 3 4 5

RTAX-S
RT-ProASIC

Virtex 4QV and Virtex 4
Virtex 5QV

Virtex 5
Stratix 5

Virtex-7Q
Virtex-7

Kintex UltraScale
Virtex UltraScale

Kintex UltraScale+
Virtex UltraScale+

Logic Capacity - Millions

150nm
130nm
90nm

65nm

28nm

20nm

16nm
Courtesy of Synopsys
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SEUs and FPGAs
• Ionizing particles cause upsets (SEUs) in FPGAs.
• Each FPGA type has different SEU error signatures:

– Temporary glitch (transient),
– Change of state (incorrect state machine transitions),
– Global upsets: Loss of clock or unexpected reset,
– Configuration corruption.  This includes route breakage (no 

signal can get through) – can be overwhelming.
• The question is how to avoid system failure and the 

answer depends on the following:
– The system’s requirements and the definition of failure,
– The target FPGA and its surrounding circuitry susceptibility,
– Implemented fail-safe strategies,
– Reliable design practices,
– Radiation environment.
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Fail-safe Strategies of Single Event 
Upsets (SEUs)

• Although there are many sources of FPGA 
malfunction, this presentation will focus on SEUs as a 
source of failure.

• The following slides will demonstrate commonly used 
mitigation strategies for FPGA devices.

• What you should learn:
– The differences between FPGA mitigation 

strategies.
– Strengths and weaknesses of various strategies.
– Questions to ask or considerations to make when 

evaluating mitigation schemes.
– Which mitigation schemes are best for various 

types of FPGA devices.
31
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SEU Testing is required in order to characterize the 
σSEUs for each of FPGA categories.

FPGA Structure Categorization as 
Defined by NASA Goddard REAG:

Design σSEU Configuration σSEU Functional logic 
σSEU

SEFI σSEU

Sequential and 
Combinatorial 
logic (CL) in 
data path

Global Routes 
and Hidden 
Logic

Single event functional interrupts (SEFI) 
SEFI out of presentation scope

SEU cross section: σSEU
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Preliminary Design Considerations for 
Mitigation And Trade Space

• Does the designer need to add 
mitigation?

• Will there be compromises?
– Performance and speed,
– Power,
– Schedule
– Mitigating the susceptible 

components?
– Reliability (working and mitigating 

as expected)?

Determine Most Susceptible Components:

Impact to speed, power, area, reliability, and 
schedule are important questions to ask.
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Single Event Upsets and FPGA 
Configuration

Pconfiguration+P(fs)functionalLogic+PSEFI
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Programmable Switch Implementation and 
SEU Susceptibility

ANTIFUSE (OTP)
SRAM (RP)
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Configuration SEU Test Results and 
the REAG FPGA SEU Model

FPGA 
Configuration

Type

REAG Model

Antifuse

SRAM (non-
mitigated)
Flash

Hardened SRAM

( ) SEFILogicfunctionalerror PfsPfsP +∝ )(

( ) ionConfiguraterror PfsP ∝

( ) SEFILogicfunctionalerror PfsPfsP +∝ )(

( ) SEFILogicfunctionalionConfiguraterror PfsPPfsP ++∝ )(

( ) SEFILogicfunctionalionConfiguraterror PfsPPfsP ++∝ )(
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What Does The Last Slide Mean?
FPGA 

Configuration 
Type

Susceptibility
Data-path: Combinatorial Logic (CL) and Flip-flops (DFFs); 
Global: Clocks and Resets;
Configuration

Antifuse Configuration has been designated as hard regarding 
SEEs.  Susceptibilities only exist in the data paths and 
global routes.  However, global routes are hardened and 
have a low SEU susceptibility.

SRAM (non-
mitigated)

Configuration has been designated as the most susceptible 
portion of circuitry.  All other upsets (except for global 
routes) are too statistically insignificant to take into account.  
E.g., it is a waste of time to study data path transients, 
however clock transient studies are significant.

Flash Configuration has been designated as hard (but NOT immune) 
regarding SEEs.  Susceptibilities also exist in the data paths and 
global routes (e.g., clocks and resets).  

Hardened
SRAM

Configuration has been designated as hardened (but NOT 
hard) regarding SEEs.  Susceptibilities also exist in the data 
paths and global routes (e.g., clocks and resets).  
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R
O
U
T
I
N
G
M
A
T
R
I
X

Example: Routing Configuration 
Upsets in a Xilinx Virtex FPGA

I1 I2 I3 I4

LUT

I1 I2 I3 I4

LUT
I1 I2 I3 I4

LUT

Look Up Table: 
LUT

Because multiple paths can pass through the routing 
matrix, this configuration can be catestrophic – i.e., 

break simple mitigation
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Fixing SRAM-based 
Configuration…Scrubbing Definition

• From SEU testing, it has been illustrated that the 
configuration memory of un-hardened SRAM-
Based FPGAs is highly susceptible to SEUs.

• We address configuration susceptibility via 
scrubbing: Scrubbing is the act of simultaneously 
writing into FPGA configuration memory as the 
device’s functional logic area is operating with 
the intent of correcting configuration memory bit 
errors.

Configuration scrubbing only pertains to 
SRAM-based configuration devices.
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Warning!

• Fixing a configuration bit does not mean that you 
have fixed the state in the functional logic path.

• In order to guarantee that the functional logic is 
in the expected state after the configuration bit is 
fixed, either the state must be restored or a reset 
must be issued. 

Reliably getting to an expected state after a 
configuration-bit SEU (that affects the design’s 
functionality) requires one of the following:
– Fix configuration bit + (reset or correct DFFs) or
– Full reconfiguration.
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Single Event Upsets in an FPGA’s Functional 
Data Path and Fail-Safe Strategies

Pconfiguration+P(fs)functionalLogic+PSEFI
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Data-path SEUs and Their Affect At The 
System Level

• A system implemented in an FPGA is a 
cascade of sequential and combinatorial 
logic.

• Probability of a system error due to an 
SEU depends on many factors:
– Probability of fault Generation in a gate (SET or 

SEU).
– Probability of error propagation – will the SET 

or SEU force the system’s next state to be 
incorrect?
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Probability of Error Propagation in A 
Data-Path

Upsets usually occur between clock cycles: Can 
cause a system-level malfunction if the SET or SEU 

will force the system’s next state to be incorrect.
• Capacitive filtration: data-path capacitance can stop 

transient upset propagation; e.g.: 
– Routing metal or heavy loading.  
– If a transient doesn’t reach a sequential element, then it most 

likely will not cause a system upset.
• Logic masking: Redundancy and mitigation of paths can 

stop upset propagation.
• Logic masking: turned off paths from gated logic can stop 

upset propagation.
• Temporal delay: path delays can block temporary SEUs 

from disturbing next state calculation.
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Goal for critical applications: 
Limit the probability of system 

error propagation and/or provide 
detection-recovery mechanisms 

via fail-safe strategies. 

Fail-Safe Strategies for FPGA 
Critical Applications
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Differentiating Fail-Safe Strategies:
• Detection:

– Watchdog (state or logic monitoring).
– Simplistic Checking … Complex Decoding.
– Action (correction or recovery).

• Masking (does not mean correction):
– Not letting an error propagate to other logic.
– Redundancy + mitigation or detection.
– Turn off faulty path.

• Correction (error may not be masked):
– Error state (memory) is changed/fixed.
– Need feedback or new data flush cycle.

• Recovery:
– Bring system to a deterministic state.
– Might include correction.
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Redundancy Is Not Enough
• Just adding redundancy to a system is not enough 

to assume that the system is well protected.
• Questions/Concerns that must be addressed for a 

critical system expecting redundancy to cure all (or 
most):
– How is the redundancy implemented?
– What portions of your system are protected? Does the 

protection comply with the results from radiation testing?
– Is detection of malfunction required to switch to a 

redundant system or to recover?
– If detection is necessary, how quickly can the detection be 

performed and responded to?
– Is detection enough?... Does the system require 

correction?
Listed are crucial concerns that should be addressed at 

design reviews and prior to design implementation
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Mitigation

• Error Masking vs. Error Correction… there’s a 
difference.

• Mitigation can be:
– User inserted: part of the actual design process.

• User must verify mitigation… Complexity is a RISK!!!!!!!!
– Embedded: built into the device library cells.

• User does not verify the mitigation – manufacturer does.

• Mitigation should reduce error…
– Generally through redundancy.
– Incorrect implementation can increase error.
– Overly complex mitigation cannot be verified and 

incurs too high of a risk to implement.
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Availability versus Correct Operation
• Requirements must be satisfied.
• What is your expected up-time versus down-time 

(availability)?
• Is correct operation well defined?  Unambiguous!
• Is system failure well defined? Unambiguous!
• Can availability and correct operation be deterministic 

regardless of error signature?
• Availability:

– Flushable designs: systems than can be reset or are self-
correcting.  Availability is affected during reset or correction 
time (down-time).  However, downtime is tolerable as defined 
by system requirements.

– Non-flushable designs:  System requirements are strict and 
require minimal downtime. Usage of resets are required to be 
kept at a minimum. 
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Detection and Recovery

• Not all mitigation schemes require detection.
• Questions/Consideration:

– If your scheme requires detection:
• Can the system detect all error signatures?
• Can the system detect all error signatures fast 

enough?
• Do different errors require different recovery 

schemes… can the system accommodate.
– How are you going to verify the detection and 

recovery?
– How much downtime will there be during recovery 

(availability = detection time from error + recovery 
time – masked error time)
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Dual Redundant Systems
(Detection Systems)
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Dual Redundancy Example
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Mitigation – Fail Safe Strategies That 
Do Not Require Fault Detection but 

Provide SEU Masking and/or 
Correction: 

Triple Modular Redundancy (TMR)
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TMR Schemes Use Majority Voting

I0 I1 I2 Majority Voter
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

102021 IIIIIIterMajorityVo ∧+∧+∧=

Triplicate and Vote
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Triplicate and Vote

Singular Data Path
Redundant Data Path

But… it’s not this easy!!!!!!!!!!!!!!!!!!!!
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TMR Implementation
• As previously illustrated, TMR can be implemented in a 

variety of ways.
• The definition of TMR depends on what portion of the 

circuit is triplicated and where the voters are placed.
• The strongest TMR implementation will triplicate all 

data-paths and contain separate voters for each data-
path.
– However, this can be costly: area, power, and 

complexity.
– Hence a trade is performed to determine the TMR 

scheme that requires the least amount of effort and 
circuitry that will meet project requirements.
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Block Triple Modular Redundancy: BTMR

• Need Feedback to Correct
• Cannot apply internal correction from voted outputs
• If blocks are not regularly flushed (e.g. reset), Errors 

can accumulate – may not be an effective technique

V
O
T
I
N
G
M
A
T
R
I
X

Complex 
function 
with 
DFFs

Can Only 
Mask 
Errors

3x the error rate with 
triplication and no 
correction/flushing

Copy 1

Copy 2

Copy 3
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Examples of a Flushable BTMR 
Designs

• Shift Registers.
• Transmission channels:  It is typical for 

transmission channels to send and reset after 
every sent packet.

• Lock-Step microprocessors that have relaxed 
requirements such that the microprocessors can 
be reset (or power-cycled) every so-often.

Voter
TRANSMIT

TRANSMIT

TRANSMIT
RESET

Transmission channel example:
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If The System Is Not Flushable, Then 
BTMR May Not Provide The Expected 

Level of Mitigation
• BTMR can work well as a mitigation 

scheme if the expected MTTF >> expected 
window of correct operation.

• Clarification: If the expected time to failure 
for one block is less than the required full-
availability window, then BTMR doesn’t buy 
you anything. 

• BTMR can actually be a detriment –
complexity, power, and area, and false 
sense of performance. 
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Combine SEU Data and Classical Reliability 
Models for Mitigation Analysis

Relibility for 1 
block (Rblock)

Relibility for 
BTMR (RBTMR)

Mean Time to 
Failure for 1 
block (MTTFblock)

Mean Time to 
Failure BTMR 
(MTTFBTMR)

e- λt 3 e- 2λt-2 e- 3λt 1/ λ (5/6 λ)= 0.833/λ

MTTFBTMR < MTTFBlock

System 2

System 1

Operating in this time 
interval will provide a slight 
increase in reliability.
However, it will provide a 
relatively hard design.

SEU Data
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What Should be Done If Availability 
Needs to be Increased?

• If the blocks within the BTMR have a relatively high upset 
rate with respect to the availability window, then stronger 
mitigation must be implemented.

• Bring the voting/correcting inside of the modules… bring 
the voting to the module DFFs.

The following slides illustrate the various forms of TMR that 
include voter insertion in the data-path.

TMR 
Nomenclature

Description TMR 
Acronym

Local TMR DFFs are triplicated LTMR
Distributed TMR DFFs and CL-data-paths are 

triplicated
DTMR

Global TMR DFFs, CL-data-paths and global 
routes are triplicated

GTMR or 
XTMR

DFF: Edge triggered flip-flop CL: Combinatorial Logic
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P(fs)error Pconfiguration + P(fs)functionalLogic + PSEFI

Describing Mitigation Effectiveness Using 
A Model

∝

P(fs)DFFSEU →SEU + P(fs)SET→SEU

Probability that an 
SEU in a DFF will 
manifest as an error 
in the next system 
clock cycle

Probability that an 
SET in a CL gate will 
manifest as an error 
in the next system 
clock cycle

DFF: Edge triggered flip-flop CL: Combinatorial Logic
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P(fs)error Pconfiguration + P(fs)functionalLogic + PSEFI

Local Triple Modular Redundancy (LTMR)

∝

P(fs)DFFSEU →SEU + P(fs)SET→SEU

0

Comb
Logic

Voter

Voter

Voter

LTMR

Comb
Logic

Comb
Logic

DFF

DFF

DFF

LTMR masks upsets from 
DFFs
and corrects DFF upsets if 
feedback is used

Only the DFFs 
are triplicated
and mitigated

62



To be presented by Melanie Berg at the Hardened Electronics and Radiation Technology (HEART) 2015 Conference, Chantilly, VA, April 21-24, 2015.

Distributed Triple Modular Redundancy 
(DTMR): DFFs + Data Paths

All DFFs with Feedback Have Voters

DTMR
Voter

Voter

Voter

Voter

Voter

Voter

Voter

Voter

Voter

P(fs)error Pconfiguration + P(fs)functionalLogic + PSEFI

P(fs)DFFSEU →SEU + P(fs)SET→SEU

∝ Low Minimally 
Lowered

0 Low

Comb 
Logic

Comb 
Logic

Comb 
Logic

DFF

DFF

DFF
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P(fs)error Pconfiguration + P(fs)functionalLogic + PSEFI

Global Triple Modular Redundancy 
(GTMR):DFFs + Data Paths + Global Routes

All DFFs with Feedback Have Voters

P(fs)DFFSEU →SEU + P(fs)SET→SEU

∝ Low Lowered

Comb
Logic

GTMR Voter

Voter

Voter

Voter

Voter

Voter Voter

Voter

Voter

DFF

DFF

DFFComb 
Logic

Comb 
Logic

Low Low
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Theoretically, GTMR Is The Strongest 
Mitigation Strategy… BUT…

• Triplicating a design and its global routes takes up a 
lot of power and area.

• Generally performed after synthesis by a tool– not 
part of RTL.

• Skew between clock domains must be minimized such 
that it is less than the feedback of a voter to its 
associated DFF:
– Does the FPGA contain enough low skew clock 

trees? (each clock + its synchronized reset)x3.
– Limit skew of clocks coming into the FPGA.
– Limit skew of clocks from their input pin to their 

clock tree.
• Difficult to verify.
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Currently, What Are The Biggest 
Challenges Regarding Mitigation 

Insertion?
• Tool availability.
• User’s are not selecting the correct mitigation 

scheme for their target FPGA.

FPGA Type LTMR DTMR GTMR
Commercial Antifuse
Antifuse+LTMR
Commercial SRAM
Commercial Flash
Hardened SRAM

General Recommendation
Not Recommended but may be a solution for some situations
Will not be a good solution
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User versus Embedded Mitigation
• A subset of user inserted mitigation strategies 

have been presented.
• None of the strategies are 100% fail-safe.
• Depending on the project requirements, and the 

target device’s SEU susceptibility, the most 
efficient mitigation strategy should be selected.

• The following short courses will provide 
information regarding FPGA devices that 
contain embedded mitigation.

• In most cases, devices with embedded 
mitigation do not require additional (user 
inserted) mitigation. 
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Concerns and Challenges for 
Mitigation Insertion

• User insertion of mitigation strategies in most FPGA 
devices has proven to be a challenging task because of 
reliability, performance, area, and power constraints.
– Difficult to synchronize across triplicated systems,
– Mitigation insertion slows down the system.
– Can’t fit a triplicated version of a design into one device.
– Power and thermal hot-spots are increased.

• The newer devices have a significant increase in gate 
count and lower power.  This helps to accommodate for 
area and power constraints while triplicating a design.  
However, this increases the challenge of module 
synchronization.

• Embedded mitigation has helped in the design process.  
However, it is proving to be an ever-increasing challenge 
for manufacturers.
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Summary
• FPGA devices have become a lucrative alternative to 

ASICs.
• For critical applications, mitigation may be required.
• Determine the correct mitigation scheme for your 

mission while incorporating given requirements:
– Understand the susceptibility of the target FPGA and how it 

responds to other devices.
– Investigate if the selected mitigation strategy is compatible to the 

target FPGA.
– Calculate the reliability of the mitigation strategy to determine if 

the final system will satisfy requirements.
• Although it is desirable from a user’s perspective to have 

embedded mitigation, cost seems to be driving the 
market towards unmitigated commercial FPGA devices.  
Hence, it will be necessary for user’s to familiarize 
themselves with optimal mitigation insertion and usage.
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