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Abstract 

 

The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. 

George H. Darwin used Laplace planes (also called proper planes) in his study of tidal 

evolution. The Laplace plane approach is adapted here to the formalisms of W. M. Kaula 

and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, 

Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written 

in terms of the Laplace plane angles. The resulting secular equations of motion can be 

easily integrated numerically assuming the Moon is in a circular orbit about the Earth and 

the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than ~10 

Earth radii, the Earth’s approximate tidal response can be characterized with a single 

parameter, which is a ratio: a Love number times the sine of a lag angle divided by 

another such product. For low parameter values it can be shown that Darwin’s low-

viscosity molten Earth, M. Ross’s and G. Schubert’s model of an Earth near melting, and 

Goldreich’s equal tidal lag angles must all give similar histories. For higher parameter 

values, as perhaps has been the case at times with the ocean tides, the Earth’s obliquity 

may have decreased slightly instead of increased once the Moon’s orbit evolved further 

than 50 Earth radii from the Earth, with possible implications for climate. This is contrast 

to the other tidal friction models mentioned, which have the obliquity always increasing 

with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2 

degrees. The equations do not allow the Moon to evolve out of its Laplace plane by tidal 

friction alone, so that if it was originally in its Laplace plane, the tilt arose with the 

addition of other mechanisms, such as resonance passages. 
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1.  Introduction 

 

 This paper treats the tidal evolution of the Earth-Moon system from the earliest 

times to the present day, a topic that has been the subject of many previous papers (e.g., 

Darwin, 1880; MacDonald, 1964; Kaula, 1964; Goldreich, 1966; Mignard, 1981; Webb, 

1982; Hansen, 1982; Ross and Schubert, 1989; Touma and Wisdom, 1994; Kagan and 

Maslova, 1994; Touma and Wisdom, 1998; Ward and Canup, 2000). The rationale for 

treating this subject once again is to update Darwin’s (1880) approach to tidal friction by 

using modern formalisms and investigate possible histories. See also Ferraz-Mello et al. 

(2008). 

 The approach developed here is a marriage of Darwin (1880), Kaula (1964), and 

Goldreich (1966). Darwin used Laplace planes in his masterly treatment of tidal friction. 

Kaula developed the remarkable formalism for expressing the tidal perturbations of the 

Moon’s orbit. Goldreich used Kaula’s equations in his elegant vector approach. All of 

these elements are combined here. (For careful considerations of Kaula’s formalism, see 

Efroimsky and Lamey, 2007; Efroimsky and Williams, 2009; and Efroimsky and 

Marakov, 2013, 2014.) 

 A three-body problem is assumed here: the Earth, Moon, and Sun. The other 

planets, which cause small oscillations in the Earth obliquity (e.g., Ward, 1974; Touma 

and Wisdom, 1994) are ignored. The Moon and Sun are point-masses. The Earth’s orbit 

about the Sun is assumed to be unaffected by tidal friction; changing the Earth’s angular 

momentum has little effect on the angular momentum of its solar orbit. As in Darwin 

(1880), all of the Laplace plane angles are taken to be small. 

 The tidal potential is expressed in terms of the Laplace plane angles. The 

equations governing the lunar orbit and the Earth’s spin state are found from the tidal 

potential. The equations are easily numerically integrated assuming the Moon is in a 

circular orbit about the Earth, and the Earth is in a circular orbit about the Sun. The 

equations are applied to Darwin’s (1880) original model of the Earth as a viscous liquid, 

particularly with a viscosity which gives small lag angles proportional to tidal constituent 

frequency; and to Ross and Schubert’s (1989) model of an Earth near melting, with tidal 

lag angles proportional to the fourth root of the frequency. Both give tidal histories for 
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the Earth-Moon system that are little different from those of Goldreich (1966) and Touma 

and Wisdom (1994). It is shown that for lunar distances greater than 10 Earth radii, the 

equations can be written containing a parameter Δ12, where Δ12 is a ratio: a Love number 

times a lag angle divided by another such product. For values of Δ12 ≤ 1, as holds for the 

models just mentioned, all these histories must be quite similar, with the Earth’s obliquity 

increasing nearly linearly with Earth-Moon distance. 

A simple model of the ocean tides is also examined here. In this case the value of 

Δ12 depends on past configurations of the ocean basins. If Δ12 was ≥ 1.6 once the Moon’s 

orbit evolved further than 50 Earth radii from the Earth, then the Earth’s obliquity may 

have decreased slightly instead of increased, in contrast to the other models. An obliquity 

decrease would have implications for the Earth’s past climate. 

As for the Moon, its orbit is currently inclined to its Laplace plane by 5.2°. The 

equations here do not allow the Moon to evolve out of its Laplace plane, which is also 

true of the previous tidal friction treatments, so that the orbit probably became tilted 

through some process other than just tidal friction, such the resonances suggested by 

Touma and Wisdom (1998) and Ward and Canup (2000). 

 Only tidal friction is considered here. Other effects, such as climate friction 

(Rubincam 1990, 1995; Ito et al. 1995; Levrard and Laskar, 2003), (also called obliquity-

oblateness feedback; Bills 1994) can increase the Earth’s obliquity, while core-mantle 

coupling can decrease it (e.g., Aoki, 1969; Néron de Surgy and Laskar, 1997; Touma and 

Wisdom, 2001; Correia, 2006). Both climate friction and core-mantle coupling are 

ignored, as are the resonances in the early Earth-Moon system which occurred when the 

Moon was less than 6 Earth radii from the Earth (Touma and Wisdom, 1998; Ward and 

Canup, 2000). Integrations stop below 7 Earth radii, except for a brief consideration of 

what happens at 3.8 Earth radii. Moreover, only second degree spherical harmonics in the 

tidal potential are considered here. Atmospheric tides are ignored. 

 

2.  Laplace planes 

 

The Moon orbits the Earth; let b be the unit vector normal to the Moon’s orbital 

plane. Also, let s be the unit vector along the Earth’s spin axis, and c be the unit vector 
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normal to the ecliptic. Let the orbital angular momentum of the Moon be hb, and the spin 

angular momentum of the Earth be Hs, so that h is the magnitude of the Moon’s orbital 

angular momentum, and H is the magnitude of the Earth’s spin angular momentum. The 

equations governing the evolution of the Earth-Moon system are given by: 

 

d(hb)
dt

= −L(s ⋅b)(s×b)+ 2K2 (rS ⋅b)(rS ×b)+TM      (1) 

 

€ 

d(Hs)
dt

= +L(s ⋅b)(s×b)+ 2K1(rS ⋅ s)(rS × s)+TE      (2) 

 

The equations and notation largely follow Goldreich (1966). One notation change is that s 

is used for the unit vector in the direction of the Earth’s spin. Goldreich uses a, but s is 

used here to avoid confusion with the Moon’s semimajor axis a. Throughout this paper 

boldface lower case letters always denote unit vectors. Also, rS is the unit vector in the 

direction from the Earth to the Sun.  

In (1) and (2) t is time and TM = TMM + TSM is the tidal torque acting on the 

Moon’s orbit due to the tides raised on the Earth. The body raising the tides is given by 

the first subscript, and the body being acted upon by the tides by the second subscript. 

Thus TMM is the torque on the Moon’s orbit from the Moon’s own tides, while TSM is the 

torque on the lunar orbit from the solar tides. Likewise, TE = TME + TSE is the total tidal 

torque on the Earth’s spin angular momentum from lunar and solar tides. 

The first term on the right side of (1) is due to the Earth’s equatorial bulge acting 

on the Moon’s orbit, where 

 

€ 

L =
3
2
J2GMEMM

RE
2

a3
" 

# 
$ 

% 

& 
'         (3) 

 

with G being the universal constant of gravitation, ME the mass of the Earth, RE the radius 

of the Earth, J2 the second degree term for the equatorial bulge in the spherical harmonic 
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expansion of the Earth’s gravitational field (currently J2 ≈ 10-3; e.g., Stacey (1992, pp. 

135-136)) 

, MM the Moon’s mass, and a the semimajor axis of the Moon’s orbit. The second term in 

(1) is due to the Sun, where 

 

K2 =
3
4
GMSMM

a2

aS
3

!

"
#

$

%
&          (4) 

 

and aS = 1 AU is the semimajor axis of the Earth’s orbit and MS is the Sun’s mass. The 

first two terms on the right side of (2) give the effect of the Moon and Sun on the Earth’s 

equatorial bulge, where 

 

€ 

K1 =
3
2
J2GMSME

RE
2

aS
3

" 

# 
$ 

% 

& 
'   .        (5) 

 

Equations (3)-(5) also use Goldreich’s notation. 

Equations (1) and (2) will first be solved by assuming TM = TE = 0, so that no 

tidal torques are operative. The reason for doing this is to elicit the Laplace planes, which 

will be used later. Without the tidal torques and averaged over time (1) and (2) become 

(Goldreich, 1966): 

 

 

€ 

d(hb)
dt

= −L(s ⋅b)(s×b)+K2 (b ⋅ c)(b× c) = hQM     (6) 

 

€ 

d(Hs)
dt

= +L(s ⋅b)(s×b)+K1(s ⋅ c)(s× c) = HQE      (7) 

 

where hQM and HQE are all the cross-product terms in the above equations, and c is the 

unit vector normal to the ecliptic. 
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Laplace (1966) gave an approximate solution to (6) and (7) in terms of Laplace 

planes, which are also called proper planes (Darwin, 1880; Allan and Cook, 1964, p. 

108). A more modern derivation of Laplace planes is given in Appendix A. The results 

are the following. Let x, y, and z be unit vectors along their respective axes in the (x, y, z) 

inertial coordinate system shown in Fig. 1. Let the unit vector normal to the Moon’s 

orbital plane be 

 

b = bxx + byy + bzz         (8) 

 

in the (x, y, z) system. Let the (xLM, yLM, zLM) coordinate system be the Laplace plane 

system for the Moon, with unit vectors xLM, yLM, and zLM along the respective axes. The 

zLM axis is tilted with respect to the z-axis by an angle θM. The xLM axis lies in the x-y 

plane with φM being the angle between the x- and xLM - axes. In the (xLM, yLM,, zLM) system  

 

b = (sin JM sin ΩM) xLM − (sin JM cos ΩM)yLM + (cos JM) zLM   (9) 

 

where JM is the angle between the zLM-axis and b, and ΩM is the nodal angle of the orbit 

in the Moon’s :aplace plane. 

Likewise, the unit vector along the Earth’s spin axis is 

 

s = sxx + syy + szz  .         (10) 

 

in the (x, y, z) system (see Fig. 2). The Earth’s Laplace plane system is (xLE, yLE,, zLE), 

with the corresponding unit vectors xLE, yLE, and zLE. The zLE-axis is tilted with respect to 

the z-axis by the angle θE. The xLE axis lies in the x-y plane with φE being the angle 

between the x- and xLE - axes. In the (xLE, yLE,, zLE) system  

 

s = (sin JE sin ΩE) xLE − (sin JE cos ΩE)yLE + (cos JE) zLE  .    (11) 

 

In this case JE is the angle between the zLE-axis and s, while ΩE is the Earth’s nodal angle 

in the Earth’s Laplace plane. The unit vector normal to the ecliptic will be denoted by 
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c = cxx + cyy + czz  .         (12) 

 

Here the ecliptic is taken to be the x-y plane, so that c = z. 

Equations (6) and (7) have the following approximate solutions (Appendix A). 

Assume JM, JE, θM, and θE are small and all are >0. The zLM-, zLE-, and z-axes all lie in a 

vertical plane, such that φM = φE = φ. Moreover, θE and θM are each constant, but φ 

precesses approximately uniformly with time at a speed of 

 

€ 

˙ φ 0  ≈ [−Lsin 2(θE−θM) + (2K1)]/(2Hsin θE)       (13) 

 

in the negative direction. Further, b precesses around zLM with constant JM, with its node 

ΩM decreasing at an approximate uniform rate of 

 

€ 

˙ Ω 0  ≈ −[L(sin JM + sin JE) + K2 sin JM]/(hsin JM) − 

€ 

˙ φ 0   .    (14) 

 

Also, s precesses around zLE with constant JE, with its node ΩE moving with the same rate 

as ΩM, but with ΩE = ΩM + π. In other words, ΩM and ΩE are always 180° out of phase. 

Finally, sin θM and sin θE are related to each other by 

 

sin θM = α sin θE         (15) 

 

and sin JM and sin JE are related to each other by 

 

sin JE = β sin JM         (16) 

 

where by Appendix A 

 

€ 

2α =1+
K1
L
−
H
h

$ 

% 
& 

' 

( 
) 1+

K2

L
$ 

% 
& 

' 

( 
)  
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€ 

+ 1+
K1
L

" 

# 
$ 

% 

& 
' 
2

+
H
h

" 

# 
$ 

% 

& 
' 
2

1+
K2

L
" 

# 
$ 

% 

& 
' 
2

− 2 H
h

" 

# 
$ 

% 

& 
' 1+

K1
L

" 

# 
$ 

% 

& 
' 1+

K2

L
" 

# 
$ 

% 

& 
' + 4

H
h

" 

# 
$ 

% 

& 
' 

) 

* 
+ 

, 

- 
. 

1/2

   (17) 

 

and 

 

2β = − 1+ K2

L
−

h
H
"

#
$

%

&
' 1−

K1
L

"

#
$

%

&
'

(

)
*

+

,
-  

 

+ 1+ K2

L
!

"
#

$

%
&
2

+
h
H
!

"
#

$

%
&
2

1− K1
L

!

"
#

$

%
&
2

− 2 h
H
!

"
#

$

%
& 1+

K2

L
!

"
#

$

%
& 1−

K1
L

!

"
#

$

%
&+ 4

h
H
!

"
#

$

%
&

(

)
*
*

+

,
-
-

1/2

  .   (18) 

 

In the next section equations (17)-(18) will be used to reduce the number of independent 

variables. 

 

3.  Tidal torques 

 

In the absence of tidal torques h, H, a, JM, JE, θM, and θE do not change secularly; 

but when tidal friction is present all of these quantities slowly evolve. Equations (1)-(2) 

can now be written 

 

€ 

db
dt
=QM −

1
h
dh
dt
b + TM

h
        (19) 

 

€ 

ds
dt

=QE −
1
H
dH
dt
s + TE

H
        (20) 

 

where  

 

€ 

dh
dt

= TM ⋅b           (21) 

 



Rubincam Tidal                                                  4/16/15                                       10 

and 

 

€ 

dH
dt

= TE ⋅ s   .          (22) 

 

The components of b and s in the (x, y, z) system are 

 

bx = sin JM (sin ΩM cos φM + cos θM cos ΩM sin φM) + cos JM sin θM sin φM  (23) 

by = sin JM (sin ΩM sin φM − cos θM cos ΩM cos φM) − cos JM sin θM cos φM  (24) 

bz = −sin JM sin θM cos ΩM  + cos JM cos θM      (25) 

 

and similarly 

 

sx = sin JE (sin ΩE cos φE + cos θE cos ΩE sin φE) + cos JE sin θE sin φE  (26) 

sy = sin JE (sin ΩE sin φE − cos θE cos ΩE cos φE) − cos JE sin θE cos φE  (27) 

sz = −sin JE sin θE cos ΩE  + cos JE cos θE  .      (28) 

 

Differentiating (23)-(28) with respect to time t, and then taking the dot-product of x cos 

φM and y sin φM with (19) and adding them together yields 

 

cos φM
dbx
dt

+ sin φM
dby
dt

 

€ 

= (cos JM sinΩM )
dJM
dt

+ (sin JM cosΩM )
dΩM

dt
 

+(0) dθM
dt

+ (sin JM cosθM cosΩM + cos JM sinθM )
dφM
dt

    (29) 

 

=QM ⋅ (xcos φM + ysin φM )+ RMA  
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where 

 

RMA = +
cos φM
h

(TM ⋅x)+
sin φM
h

(TM ⋅ y)−
sin JM sinΩM

h
(TM ⋅b)    (30) 

 

Similarly, 

 

€ 

cosθM sin φM
dbx
dt

− cos φM
dby
dt

% 

& 
' 

( 

) 
* − sinθM

dbz
dt

 

€ 

= (cos JM cosΩM )
dJM
dt

− (sin JM sinΩM )
dΩM

dt
 

+(cos JM )
dθM
dt

− (sin JM cosθM sinΩM )
dφM
dt

      (31) 

= cosθMQM ⋅ (xsin φM − ycos φM )− sinθMQM ⋅ z   

 

where 

 

RMB =
cosθM sin φM

h
(TM ⋅x)−

cosθM cos φM
h

(TM ⋅ y)  

€ 

−
sinθM

h
(TM ⋅ z)−

sin JM cosΩM

h
(TM ⋅b)  .      (32) 

 

The analogous equations for the Earth are by (20) 

 

€ 

cos φS
dsx
dt

+ sin φE
dsy
dt

 

€ 

= (cos JE sinΩE )
dJE
dt

+ (sin JE cosΩE )
dΩE

dt
 

+(0) dθE
dt

+ (sin JE cosθE cosΩE + cos JE sinθE )
dφE
dt

  ,    (33) 
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=QE ⋅ (xcos φE + ysin φE )+ REA  

 

where 

 

REA =
cos φE
H

(TE ⋅x)+
sin φE
H

(TE ⋅ y)−
sin JE sinΩE

H
(TE ⋅ s)     (34) 

 

and 

 

€ 

cosθE sin φE
dsx
dt

− cos φE
dsy
dt

% 

& 
' 

( 

) 
* − sinθE

dsz
dt

 

 

= (cos JE cosΩE )
dJE
dt

− (sin JE sinΩE )
dΩE

dt
 

+(cos JE )
dθE
dt

− (sin JE cosθE sinΩE )
dφE
dt

      (35) 

 

= cosθEQE ⋅ (xsin φE − ycos φE )− sinθEQE ⋅ z + REB  

 

where 

 

REB =
cosθE sin φE

H
(TE ⋅x)−

cosθE cos φE
H

(TE ⋅ y)  

€ 

−
sinθE
H

(TE ⋅ z)−
sin JE cosΩE

H
(TE ⋅ s)  .      (36) 

 

Equations (29), (31). (33), and (35) are four equations in eight unknowns. Four additional 

equations must be specified in order to obtain a unique solution. These additional 
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equations will be those found for the Laplace planes in the preceding section, namely 

(17), (18), and 

 

φE = φM = φ,          (37) 

 

ΩE = ΩM + π = Ω + π         (38) 

 

where ΩM = Ω. Eliminating φE, ΩE, JE, and θM appearing in the derivatives in (29), (31), 

(33), and (35) yields four equations in four unknowns: 

 

€ 

(cos JM sinΩ)
dJM
dt

+ (sin JM cosΩ )
dΩ
dt

 

€ 

+(0)α cosθE
cosθM

dθE
dt

+ (sin JM cosθM cosΩ + cos JM sinθM )
dφ
dt

 

€ 

= RMA − (0)
sinθE
cosθM

dα
dt

        (39) 

 

 

€ 

(cos JM cosΩ )
dJM
dt

− (sin JM sinΩ )
dΩ
dt

 

€ 

+
α cosθE cos JM

cosθM

$ 

% 
& 

' 

( 
) 
dθE
dt

− (sin JM cosθM sinΩ)
dφ
dt

 

€ 

= RMB −
cos JM sinθE
cosθM

$ 

% 
& 

' 

( 
) 
dα
dt

        (40) 

 

 

€ 

−(β cos JM sinΩ)
dJM
dt

− (sin JE cosΩ )
dΩ
dt

 

€ 

+(0) dθE
dt

+ (−sin JE cosθE cosΩ + cos JE sinθE )
dφ
dt

 



Rubincam Tidal                                                  4/16/15                                       14 

€ 

= REA + sin JM sinΩ
dβ
dt

        (41) 

 

 

€ 

(−β cos JE cosΩ)
dJM
dt

+ (+sin JE sinΩ )
dΩ
dt

 

€ 

+cos JE
dθE
dt

+ (sin JE cosθE sinΩ)
dφ
dt

 

€ 

= REB + sin JM cosΩ
dβ
dt

        (42) 

 

Assuming small angles, so that cos θM ≈ cos θE ≈ cos JM ≈ cos JE ≈ 1 in (39)-(42), and 

solving the set of linear equations gives 

 

€ 

dJM
dt

≈
1

1+αβ

% 

& 
' 

( 

) 
* RMA sinΩ + RMB cosΩ − sinθE cosΩ

dα
dt

% 

& 
' 

( 

) 
*  

€ 

−
α

1+αβ

% 

& 
' 

( 

) 
* REA sinΩ + REB cosΩ + sin JM

dβ
dt

% 

& 
' 

( 

) 
*      (43) 

 

and 

 

€ 

dθE
dt

≈
1

1+αβ

& 

' 
( 

) 

* 
+ βRMB + REB + sin JM cosΩ

dβ
dt

−β sinθE
dα
dt

& 

' 
( 

) 

* 
+    (44) 

 

where dα/dt and dβ/dt are given in Appendix A. 

 

4.  The equations for dJM/dt and dθE/dt 

 

 Finding RMA, RMB, REA, and REB is quite lengthy. General expressions for the 

torque dot-products are derived in Appendix B. Specific expressions for the torques are 

found from the tidal potential. The tidal potential is derived in Appendix C. The tidal 

potential is 
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€ 

Vm>0 =
GM * RE

5

a3(a*)3 G2 pq (e*)G2PQ(e)F2np (J*)F2 NP
Q=−∞

+∞

∑
q=−∞

+∞

∑
P=0

2

∑
p=0

2

∑
N =0

2

∑
n=0

2

∑ ( ˜ J ) 

 

€ 

2(2 −m)!
(2+m)!m=1

2

∑
γ=1

2

∑ k2mnjγpq
* B2m1njγ (JE*,d*)B2m1NJγ (JE ,d)

J=−2

2

∑
j=−2

2

∑  

 

⋅cos{(2− 2p)ω *+(2− 2p+ q)M *+nΩ*+ jΩE +δ2mnjγ pq
∗  

 

€ 

−[(2 − 2P)ω + (2 − 2P +Q)M + NΩ + JΩE ]}  
 

€ 

+(−1)m k2mnjγpq
* B2m1njγ (JE*,d*)B2m1NJ (3−γ ) (JE ,d)  

 

€ 

⋅cos{(2 − 2p)ω *+(2 − 2p + q)M *+nΩ *+ jΩE +δ2mnjγpq
∗  

 

+[(2− 2P)ω + (2− 2P +Q)M + NΩ+ JΩE ]}   .          (45) 
 

Here M* is the mass of the tide-raising body, the G2pq(e*) are the second degree 

eccentricity functions and the F2np(J*) are the second degree inclination functions, while 

the (a*,e*,J*,Ω*,ω*,

€ 

M *) are the Keplerian elements of the tide-raising body: a* is the 

semimajor axis, e* is the orbital eccentricity, J* is the orbital inclination, Ω* is the nodal 

position, ω* is the argument of perigee, and 

€ 

M * is the mean anomaly, all measured in 

the tide-raising body’s Laplace plane system. Also, J* = JM or J* = JS, depending upon 

whether the Moon or the Sun is the tide-raising body. The Keplerian elements of the body 

being acted upon by the tides are given without asterisks. The B2m1njγ(JE, d) functions are 

derived from the considerations in Appendix D. Table 1 lists the ones which depend on 

the zeroth- and first-order in the sines of the angles, which are the only ones needed here. 

In the following e = 0 for the lunar and solar orbits so that only the Q = q = 0, p = P = 1 

terms in G2pq(e*) and G2PQ(e) are non-zero, with G210(0) = 1. In (45) k2mnjγ pq
*  is the Love 

number, whileδ2mnjγ pq
*  is the lag angle associated with each trigonometric argument. 
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Let µ1, µ2, and µ3 be the respective unit vectors along the axes of the Moon’s (xµ, 

yµ, zµ) system as shown in Fig. 3, where µ3 is identical with the b vector and is normal to 

the orbit, µ1 lies along the nodal line, and µ2 makes the system right-handed. Let TM1 = 

TM⋅µ1, TM2 = TM⋅µ2, and TM3 = TM⋅µ3 be the torque components (TM1, TM2, TM3) in the 

(xµ, yµ, zµ) system. Likewise by analogy to the Moon’s (xµ, yµ, zµ) system, let the Earth’s 

(xξ, yξ, zξ) system have unit vectors ξ1, ξ2, ξ3, with ξ3 = s, where s is the unit vector 

along the spin axis, ξ1 lies along the Earth’s nodal line, and ξ2 makes the system right-

handed (Fig. 4). The torque on the Earth TE will have the components TE1 = TE⋅ξ1, TE2 = 

TE⋅ξ2, and TE3 = TE⋅ξ3 in the (xξ, yξ, zξ) system. 

 The torques are found from (45). For instance, the first torque that appears on the 

right-hand side of (B1) is TM2 = TMM2 + TSM2. For circular orbits the tidal torque TMM2 on 

the Moon’s orbit from the tidal potential VMM from the lunar tides is 

 

TMM 2 =MM
1

sin JM
∂VMM
∂ΩM

− cot JM
∂VMM
∂ωM

"

#
$

%

&
'  

 

 (e.g., Goldreich, 1966, p. 429, after multiplying his expression by a missing factor of 

MM). Only the secular part of TMM2 is desired; hence the periodic parts must vanish. After 

taking the derivatives, the step in making the mean anomaly vanish in the trigonometric 

arguments in VMM is to note that this happens when p = P in the first argument, and p = 2 

− P in the second argument. This allows the summation over P to be eliminated, yielding 

 

TMM 2 =
2GMM

2

RE
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a

!
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∑
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2
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N − (2− 2p)cos JM
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'
(sin[(n− N )ΩM + ( j − J )ΩE +δ2mnjγ p0

M ]  

 

€ 
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Other examples are 

 

TMS1 =MS
∂VMS
∂JM

 

 

where 
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€ 

+sin[(−N + f )ΩS + nΩM + ( j − J + g)ΩE +δ2mnjγ10
M ]} 
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⋅{−sin[(N − f )ΩS + nΩM + ( j + J − g)ΩE +δ2mnjγ10
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€ 

+sin[(N + f )ΩS + nΩM + ( j + J + g)ΩE +δ2mnjγ10
M ]} 

 

and 

 

TSS3 =MS
∂VSS
∂MS
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+(−1)m+1k2mnjγ p0
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⋅{(2p− 2)sin[(n+ N − f )ΩS + ( j + J − g)ΩE +δ2mnjγ p0
S ]  

 

+(2p− 2)sin[(n+ N + f )ΩS + ( j + J + g)ΩE +δ2mnjγ p0
S ]}    

 

where the Ufg
S1,ξ 2 , Wfg

S3,ξ1 , etc. functions are given in Appendix B. 

These and similar expressions go into (B1) and (B2). Only the secular terms are 

desired in these expressions, which means choosing values for n, N, j, J, f, and g which 

make periodic terms vanish, leaving only sines of the lag angles. In choosing, one must 

be careful to note two things in these expressions. The first is that ΩE is set to ΩM + π as 
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in (36). The second is that ΩS is set to π after any differentiation with respect to ΩS, so the 

coefficient of ΩS does not necessarily vanish. Hence π must be dealt with inside the 

arguments. 

Only terms which are first-order in sin JM ≈ JM, sin JE ≈ JE, sin θM ≈ θM, sin θE ≈ 

θE, and sin (θE − θM) ≈ θE − θM on the right side of (B1) and (B2) are retained here, with 

all the cosines of these angles being ≈ 1. Even so, there are dozens of terms which must 

be tediously worked out. The final equations are 
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and 
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In these equations the Love numbers k2mnjγ p0
*  and lag angles δ2mnjγ p0

*  can be 

frequency-dependent; if so, it is further assumed that they are controlled by the two 

fastest variables in the associated argument 

 

(2− 2p)ω *+(2− 2p)M *+nΩ *+ jΩE + (−1)
γmψ *   , 

 

namely mean motion M *  and the Earth’s rotation rate &ψ , where ψ is the rotation angle 

of a fixed longitude (“Greenwich”) on the Earth (Appendix C and Kaula (1964)). Hence 

the Love numbers and lag angles are characterized only by subscripts m and p, the idea 

being that the much slower nodal rates will not change their values much. Thus in k20
M , 

for example, m = 2 and p = 0. 

 The two variables JM and θE in (46) and (47) decouple from each other: the 

equation for dJM/dt depends only on JM, and dθE/dt depends only on θE. This remarkable 

fact was discovered by Darwin (1880). 

A pitfall to avoid in working out the terms in (46) and (47) has to do with the sign 

of the lag angle. When the Moon is further than ~3.8RE from the Earth the rate of the 

argument is negative for γ = 1 in (45) because the Earth’s rotation rate dominates twice 

the Moon’s mean motion and the much slower nodal rates. This means that the lag angles 

δ2mnj1p0
*  are positive. However, when γ = 2, the lag angle changes sign. In the above 

δ2mnj2 p0
* = −δ2mnj1p0

* . 
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By (21) and (22) 
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which agrees with Kaula (1964, p. 677). Also, 
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to the current level of approximation, where &ψ  is the Earth’s rotation rate, and CE is its 

moment of inertia. These two equations allow the Moon’s semimajor axis a and the 

Earth’s rotation rate to be found as a function of time. Also, the Earth’s J2 is to be found 

from 

 

J2 = J2
0 &ψ

&ψ0

!

"
#

$

%
&

2

               (50)
 

 

where J2
0  is the value of J2 when &ψ = &ψ0 , so that the Earth’s rotational flattening 

decreases as the rotation rate decreases. 

 Equations (45) - (50) are the fundamental equations of this paper. They will be 

used to find JM, θE, a, and  &ψ  as functions of time t for circular orbits. 

 

5.  Darwin’s viscous liquid 

 



Rubincam Tidal                                                  4/16/15                                       22 

 Equations (46)-(50) are applied to rheological models of the Earth, the first being 

Darwin’s model. Darwin (1880) chose a constant-density viscous liquid as his rheological 

model, presumably because no other quantitative model was available. In this case  

 

tanδ = 19νηE

2gEρERE
= ςνηE  

 

where ν is the absolute value of the frequency of a generic tidal constituent, δ is the lag 

angle, gE = GME/RE
2 is the gravitational acceleration at the Earth’s surface, ρE is the 

average density of the Earth, ηE is the Earth’s viscosity, and ζ = 19/(2gEρERE)  =  2.8 × 

10-11 kg-1 m s2. From the above equation cos δ = 1/[1 + (ζνηE)2]1/2 and sin δ = ζνηE/[1 + 

(ζνηE)2]1/2. The generic Love number is k2 = (3/2)cos δ, so that k2 sin δ = (3/2)ζνηE/[1 + 

(ζνηE)2] (see Fig. 5). Here k2 sin δ ∝ νηE when ζνηE << 1, so that the tidal lag angle is 

proportional to tidal frequency, while k2 hardly changes with frequency. These have been 

common assumptions in past studies (e.g., Efroimsky and Marakov, 2013). At the other 

extreme k2 sin δ, ∝ (νηE)-1 when ζνηE >> 1. 

The choice of ηE ≈ 1012 Pa s gives small lag angles and a timescale on the age of 

the Solar System. The changes in JM, and θE track the canonical results of Goldreich 

(1966) and Touma and Wisdom (1994) extremely well and are not reproduced here. 

 Perhaps the only interesting feature of the viscous liquid model is what happens 

near the resonance when a ≈ 3.8 RE, where the frequency −2n + &ψ
 
 of the m = 1, p = 0 

constituent changes sign. Here for the large viscosity ηE ≈ 1017 Pa s, angle JM can 

dramatically increase from a finite initial value as the Moon moves away from the Earth 

(Rubincam, 1975). Using (46)-(50) confirms this. However, the problem is that for the 

dramatic rise in JM to happen, the Love number has to be extremely low: k2 ≈ 0.0001 at 

the M2 frequency. Such a low Love number is exceedingly implausible for the Earth 

regardless of rheology. Moreover, the Moon may have formed further than 3.8 RE from 

the Earth, as in the giant impact hypothesis (e.g., Benz et al., 1986). 
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6.  Ross-Schubert model 

 

 The next rheological model is that of Ross and Schubert (1989), who investigated 

tidal friction as a two-body problem, considering only the Earth and Moon. Their 

rheological model is not a theoretical model like a viscous liquid or a Maxwell body, but 

rather is an empirically-based model. They give the following three equations on their 

page 9536. For the Love number they give 

 

k2 =
k0

1+ 19µE

2gEρERE

!

"
#

$

%
&

 

 

where 

 

µE = µ0 cos (τE/Ξ) .              (52) 

 

In these equations µE is the Earth’s shear modulus, τE is a bulk temperature for the Earth, 

while k0, µ0, and Ξ are constants. After correcting a typographical error in the exponent, 

their lag angle is given by 

 

 δ  = δ0 exp (−D/τE)/ν χ ≈ sin δ  .            (53) 

 

Here ν is once again the absolute value of frequency, and δ0, D, and χ are constants. It is 

to be noted that the Love number k2 is frequency-independent in their model, so that all 

frequency-dependence in the product k2 sin δ comes from δ. The functional form of (52) 

and (53) as well as the associated constants given in Table 2 are based on experiments. It 

is of interest that χ ≈ 0.25 in their model, a value which is quite different from the χ = 1 

often assumed in tidal lags, as in Darwin’s (1880) low viscosity model (Efroimsky and 

Lainey, 2007). As for the lag angle, Ross and Schubert note that for the M2 frequency 
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when the Moon is near 10RE, δ ≈ 0.1 radians for rocks on the verge of melting. Moreover, 

they assume  k2 = 0.3 and δ ≈ 0.004 radians for the solid part of the Earth today. The 

choices of δ0 and D anchor the end points.  

As the Earth cools k2 and δ change. Ross and Schubert do not given a specific 

equation for temperature τE as a function of time, but it is approximately 

 

τE = τ0 + τ1 exp (−tbil/τ2) − τ3tbil 

 

where tbil is time in 109 y and the constants τ0, τ1, τ2, and τ3 are given in Table 2. The 

behavior of k2 and δ as a function of time is shown in Fig. 6. 

 The lunar history for the Ross-Schubert model can be integrated using (46)-(50) 

and the parameters in the right-hand column in Table 2. These parameters are somewhat 

different from those of Ross and Schubert (left-hand column) but probably lie within the 

uncertainties of the values. They were chosen to give k2 = 1 in the case where the Earth 

has no strength, in keeping with the secular Love number ks being ~1 (e.g., Lambeck, 

1980, p. 26). The integration starts at a = 7.3 RE with the Earth’s spin rate being 4.1 times 

its present value, along with JM = 7.3° and θE = 12°. The integration begins past the 

resonances in the early Earth-Moon system (Touma and Wisdom, 1998; Ward and 

Canup, 2000). The integration ends after 4.55 × 109 y. 

The results are shown in Figs. 7-9. The solid curves give the canonical values of 

Goldreich (1966) and Touma and Wisdom (1994), while the data points plotted every 5 

RE are those of the present integration. The curves and data points track each other well, 

so that the Ross-Schubert history varies little from the other histories. All of the data 

points end at 55 RE. This is as far as the assumed tidal friction can push the Moon over 

the age of the Solar System. The Moon’s present distance from the Earth is 60.3 RE.  

Figure 7 shows the length-of-day (LOD) as a function of Earth-Moon distance. 

Fig. 8 shows JM, θM, and I, with I being the inclination of the Moon’s orbital plane with 

respect to the ecliptic. Here JM bisects the oscillations in I when the Moon is close to the 

Earth, while far from the Earth JM is essentially I because θM becomes small, so that the 

pole of the cone in Fig. 1 approaches the pole of the ecliptic. (Inclination I is always 
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taken to be positive, which is the reason the lower branch of the curve shows the peculiar 

“bounce” between 7 RE and 17 RE.) Figure 9 shows θE, JE, and the Earth’s obliquity ε. 

When the Moon is close to the Earth, θE bisects the obliquity oscillations caused by the 

coning motion with amplitude JE (illustrated in Fig. 2). Far from the Earth the obliquity 

oscillations die out and θE essentially becomes ε because of the small amplitude of JE, 

which becomes the nutation angle. 

 

7.  The one-parameter approximation 

 

 The tidal friction equations can be rewritten in order to understand why the Ross-

Schubert model gives a tidal history similar to Darwin’s (1880) low-viscosity Earth and  

Goldreich’s (1966) equal lag angles. Assume that the Moon is more than ~10 RE from the 

Earth, so that the frequencies are ~ &ψ  for the m = 1, p = 0, 1 lunar and solar tidal 

constituents. Hence the Love number times the sine of the lag angle are the same and can 

be written as k11 sin δ11. Likewise the m = 2, p = 0 constituents have frequencies ~2 &ψ  for 

the Sun and Moon, and the product of the Love number and lag angle can be written k20 

sin δ20. Thus if (46) and (47) are divided by (48), then those equations become 
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where 

 

 Δ12 = k11 sin δ11/k20 sin δ20  .        (56) 

 

 Hence the equations governing the evolution of the Earth-Moon system can be 

characterized with a single parameter Δ12, which is expected to vary with time.  

 Figure 10 shows θE for 0 ≤ Δ12 ≤ 2 (grey region), where Δ12 is simply a constant 

for all a. The dashed line is for Δ12 = 1, as in Goldreich (1966, p. 434). The lower solid 

curve is for Δ12  = 0. A lower bound of zero is not physical, and only represents the 

extreme lower limit for solid-Earth tides. Lag angles which depend on linearly on 

frequency, or frequency to some power < 1 as in the Ross-Schubert model, have Δ12 ≤ 1 

if the associated Love numbers are only weakly frequency-dependent. Thus all such 

models are trapped between the dashed curve and the lower solid curve in Fig. 10. Since 

there is not much space between the curves, all models for which Δ12 ≤ 1 will have quite 

similar obliquity histories. This is the reason Ross and Schubert’s (1989) model does not 

differ greatly from Goldreich (1966) or Darwin’s (1880) low-viscosity Earth in terms of 

obliquity history.  
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8.  Ocean tides 

 

As indicated above in section 6, solid friction may be responsible for most of the 

tidal evolution of the Earth-Moon system. This section instead assumes that solid friction 

is negligible and the tidal evolution is due mainly to the oceans, which may have formed 

very early in the Earth’s history (Wilde et al., 2001). The ocean tides today are the main 

driver of tidal friction and are in fact anomalously high, in the sense that their operating 

at the present level would make the Moon come close to the Earth only 1.5 × 109 y ago 

(e.g., Lambeck, 1980; Bills and Ray, 1999), which is geologically untenable. 

With the oceans, each term in the tide-raising potential raises multiple harmonics 

in the tidal potential (e.g., Lambeck, 1980). This is in contrast to what is assumed for the 

solid-Earth tides. But only those harmonics whose frequencies are geared the body 

affected by the tides need be considered to obtain the secular evolution. Therefore (54) 

and (55) can still be used as a highly simplified model for the ocean tides. 

The oceans could give obliquity histories dissimilar to the rheologies for which 

Δ12 ≤ 1. The oceans’ response to the m = 1 harmonic could be quite different from their 

response to the m = 2 harmonic. Thus Δ12 would be expected to vary as the ocean basins 

change shape, depth, and position as the continents drift into various configurations over 

the course of Earth history. Hence Δ12 might be ≥ 1 at times. The upper solid curve in 

Fig. 10 is for Δ12  = 2, so that the region between the dashed curve and the solid upper 

curve is for 1 ≤ Δ12 ≤ 2. Perhaps the most interesting feature of Fig. 10 is that θE, which is  

basically Earth’s obliquity ε when the Moon more than halfway to its current distance, 

can actually decrease when the Moon is more than ~50 RE from the Earth and Δ12 ≥ 1.6. 

What about the tilt of the Moon’s orbit to the ecliptic? It turns out that the Moon’s 

JM, which essentially becomes the orbital inclination I to the ecliptic for distances > 30 

RE, is very insensitive to Δ12 for 0 ≤ Δ12 ≤ 2. Therefore no graph similar to Fig. 10 is 

shown for it. 
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9.  Nodal and semiannual tides 

 

 Equations corresponding to (46) and (47) can derived for the nodal tide and 

semiannual tide and are given in Appendix E. They are derived from Vm=0 given by (C10) 

(details of the derivations omitted). 

The rationale for examining these m = 0 tides is that they are long-period, with the 

nodal tide having a period of 2π/ &Ω , while the semiannual tide has a period of half a year. 

The early Earth might respond to these long-period tides more through viscosity than 

anelasticity, and thus give large lag angles, which might offset the fact that the right sides 

of (E1)-(E4) are of higher order in the angles than are (46) and (47). However, integration 

of (E1)-(E4) with the sines of the lag angles being set equal to 1 give only trivial changes 

in the evolution of JM and θE compared to (46) and (47) and can be neglected. 

 

10.  Discussion 

 

 Equations (45)-(50) and (54)-(55) are the fundamental equations of this paper, 

with (46) and (47) being the modern version of Darwin’s (1880) equations. The equation 

for the tidal potential (45) is valid for all orbits regardless of orbital eccentricity. Also, in 

(45) the variables in the trigonometric arguments tend to change nearly uniformly with 

time at all Earth-Moon distances when the angles θE, JE, θM, and JM are all small, as is the 

case for the Earth. This is in contrast to Kaula’s (1964) equations, which are formulated 

in the Earth frame, with the trigonometric arguments changing nearly uniformly with 

time only when the Moon is close to the Earth. 

In contrast to (45), equations (46)-(49) apply only to circular orbits. As Figs. 8 

and 9 show, (46)-(50) agree quite well with the integrations by Goldreich (1966) and 

Touma and Wisdom (1994), indicating that the equations derived here are probably 

correct. A virtue of (46)-(50) is that they are easy to integrate numerically, although the 

equations of Goldreich and Touma and Wisdom are not particularly burdensome to 

integrate with today’s computers. 

 The equations are linear in the sense that each periodic term in the tide-raising 

potential yields a corresponding term in the tidal potential (45) with the same frequency, 
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but changed in amplitude and shifted in phase. The equations can be nonlinear in the 

sense that, for instance, the lag angle is not necessarily proportional to the frequency, but 

may depend on the frequency to some power, as in the case of the Ross-Schubert model, 

where the lag angle is proportional to the fourth root of the frequency. 

 It is not generally recognized that Darwin (1880) realized that not just the tides 

raised by the Moon secularly affect the Moon, but also the Sun affects the lunar tidal 

bulge, and the Moon affects the solar tidal bulge. This can be seen in Darwin’s equations 

(250)-(251) in the terms in which his quantities τ and τ’ appear together, with τ referring 

to the Moon and τ’ referring to the Sun. These mixed terms are apparent in (46)-(47), in 

which the mass of the Moon MM and the mass of the Sun MS appear together. 

Probably the reason the mixed terms escaped modern notice until Goldreich 

(1966) is the extreme length of Darwin’s work, which was necessitated by the lack of 

mathematical formalisms available to him. For instance, his equations (251)-(251) appear 

after a dense exposition almost 90 pages into his massive 175 page paper. All in all, 

Darwin labored mightily with the tools at his command and did a remarkable job. 

An important feature of (54) and (55) is that the solution to each equation can be 

written in the form 

 

JM (a) = JM
0 exp FJ daa0

a
∫( )

          
 

θE (a) =θE
0 exp Fθ daa0

a
∫( )

          
 

where JM
0 is the value of JM at starting value a0, and likewise for θE

0 and θE. Here FJ and 

Fθ are functions which depend on a and the Earth’s initial spin state. The angle JM can 

grow from some initial finite angle as the Moon evolves past 3.8 RE (Rubincam, 1975); 

but as stated above, the model for accomplishing this is implausible; and there is no 

guarantee the Moon was ever that close to the Earth. 

If JM
0 = 0, then JM remains zero regardless of the details of tidal evolution. When 

the Moon is close to the Earth, JM is essentially the angle between the Moon’s orbital 
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plane and the Earth’s equator. When the Moon is far from the Earth, JM is basically the 

angle between the Moon’s orbital plane and the ecliptic. If the Moon ever orbited in its 

Laplace plane (JM = 0) and the orbit evolved outwards through tidal friction alone, then 

the Moon should be in the ecliptic today; in which case the Earth should see a solar 

eclipse every month. 

However, presently the Moon’s orbit is tilted by 5.2° to the ecliptic and solar 

eclipses occur only when the nodal line points to the Sun, and the Moon happens to be on 

the nodal line; thus solar eclipses seen from the Earth are fairly rare. The equations 

developed here and in previous studies do not allow the Moon to leave its Laplace plane 

if it formed in it. Thus, if these tidal friction histories are taken at face value, then the 

Moon never orbited in its Laplace plane and would seem to eliminate theories of the 

Moon’s origin, such as forming by accretion close to the Earth in the equatorial plane; 

fissioning from the Earth and being thrown into an equatorial orbit; and Mars fissioning 

from the Earth with the Moon forming as a droplet in between the two bodies, as in 

Lyttleton’s (1969) hypothesis. However, the giant impact hypothesis and resonances 

operating in addition to tidal friction do allow the present tilt (Touma and Wisdom, 1998; 

Ward and Canup, 2000). 

 Ross and Schubert (1989) in their two-body treatment found that solid tidal 

friction alone can account for the tidal evolution of the Earth-Moon system out to ~50 RE, 

implying that most of the evolution comes from the solid Earth and not the oceans. This 

possibility is confirmed here: using somewhat different parameters from theirs, the Ross-

Schubert model can account for evolution out to 55 RE, and other parameters can 

certainly be chosen to take the Moon out to its present distance from the Earth. While 

tidal friction in the oceans currently plays the largest role in the evolution of the Earth-

Moon system, it perhaps played a smaller role early on than previously expected, as 

proposed by Ross and Schubert. 

 The oceans may have actually decreased the Earth’s obliquity at times instead of 

increasing it for distances between 50 RE and the present 60.3 RE, which is just the range 

in which the contribution by the solid Earth to tidal friction may have become small, as in 

the Ross-Schubert model. The large values of Δ12 required to make this happen is 

presumably the reason that Hansen (1982, his Fig. 9) finds an abrupt decrease in one of 
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his ocean models at an M2 resonance 1.3 × 109 y ago. Perhaps the denominator in (56) 

became small. But more gentle decreases over time because Δ12 >1.6  (Fig. 10) may be 

possible and worth investigating.  

 The Earth’s obliquity oscillates by ~ ±1° with a 41,000 y period due to the other 

planets (e.g., Ward, 1974; Touma and Wisdom, 1994). This small oscillation, which is 

one of the Milankovitch cycles, is enough to induce ice sheet growth and decay (e.g., 

Hays et al., 1976; Rubincam, 1995; Bills, 1994). Hence the Earth’s climate system is 

quite sensitive to tilt, so that even a modest obliquity decrease might have implications 

for the Earth’s climate. The problem here is lack of information regarding the ancient 

oceans. Numerical ocean models with various assumed basin geometries would have to 

be examined to see whether obliquity decreases are realistic. 
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Appendix A 

 

 This appendix derives the Laplace planes (also called proper planes; Laplace, 

1966; Allan and Cook, 1964). Darwin (1880) used them in his treatment of tidal friction 

in the Earth-Moon system, as is done here. Boue and Laskar (2006) recently used a 

Hamiltonian approach to derive them. The more messy but direct approach below is more 

in the spirit of, but not identical with, Darwin’s. 

The quantities JM, JE, θM, and θE are all assumed to be greater than zero. The 

equations to be solved are (29), (31), (33), and (35) with φ = φM = φE, Ω = ΩM, ΩE = ΩM + 

π, and TM = TE = 0. It is helpful to note that 

 

b⋅s 

= sin JM sin JE [−sin2 Ω − cos (θE−θM) cos2 Ω)] + sin JM cos JE [sin (θE−θM) cos Ω] 

+ sin JE cos JM [sin (θE−θM) cos Ω] + cos JM cos JE [cos (θE−θM)]  . 
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Using such expressions as 2cos2 Ω = (1 + cos 2Ω) etc., (29) becomes 

 

€ 

(cos JM sinΩ)
dJM
dt

+ (sin JM cosΩ )
dΩ
dt

 

€ 

+(0) dθM

dt
+ (sin JM cosθM cosΩ + cos JM sinθM )

dφ
dt

 

€ 

= −
L
h

An
n=0

4

∑ cos nΩ +
K2

h
Cn

n=0

4

∑ cos nΩ       (A1) 

 

where 

 

€ 

An
n=0

4

∑ cos nΩ = (b ⋅ s)[cos φ(sybz − szby )+ sin φ(szbx − sxbz )]     

 

€ 

Cn
n=0

2

∑ cos nΩ = (b ⋅ c)[cos φ(cybz − czby )+ sin φ(czbx − cxbz )]     

 

with cx = cy = 0, cz =1, and 

 

16A0 = −8 cos2 JM cos2 JE [sin 2(θE−θM)] + 4 sin2 JE cos2 JM [sin 2(θE−θM)] + 4 sin2 JM 

cos2 JE [sin 2(θE−θM)] + 8 sin JM sin JE cos JM cos JE [sin (θE−θM) + 2sin 2(θE−θM)] − 3 

sin2 JM sin2 JE [sin 2(θE−θM)] 

 

16A1 = + 16 sin JE cos2 JM cos JE [cos 2(θE−θM)] + 16 sin JM cos JM cos2 JE [cos 

2(θE−θM)] − 4 sin JM sin2 JE cos JM [cos (θE−θM)+ 3 cos 2(θE−θM)] − 4 sin2 JM sin JE cos 

JE [cos (θE−θM)+ 3 cos 2(θE−θM)] 

 

4C0 = −2 cos2 JM sin 2θM + sin2 JM sin 2θM  
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4C1 = −4 sin JM cos JM cos 2θM  . 

 

Likewise, (31) becomes 

 

€ 

(cos JM cosΩ )
dJM
dt

− (sin JM sinΩ )
dΩ
dt

 

€ 

+(cos JM )
dθM

dt
− (sin JM cosθM sinΩ)

dφ
dt

 

€ 

= −
L
h

Bn
n=1

4

∑ sin nΩ +
K2

h
Dn

n=1

4

∑ sin nΩ        (A2) 

 

where 

 

€ 

Bn
n=1

4

∑ sin nΩ = (b ⋅ s){cosθM [sin φ (sybz − szby ) 

         

€ 

−cos φ (szbx − sxbz )]− sinθM (sxby − sybx )}       

 

€ 

Dn
n=1

2

∑ sin nΩ = (b ⋅ c){cosθM [sin φ (cybz − czby )  

           

€ 

−cos φ (czbx − cxbz )]− sinθM (cxby − cybx )}  

 

with 

 

16B1 = − 16 sin JE cos2 JM cos JE [cos (θE−θM)] − 16 sin JM cos JM cos2 JE [cos2 (θE−θM)] 

+ 4 sin JM sin2 JE cos JM [3 − sin2 (θE−θM) + cos (θE−θM)] + 4sin2 JM sin JE cos JE [3cos 

(θE−θM)+ cos 2(θE−θM)] 
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4D1 = 4sin JM cos JM cos2 θM  . 

 

The equations corresponding to (33) and (35) for the Earth are 

 

€ 

−(cos JE sinΩ )
dJE
dt

− (sin JE cosΩ)
dΩ
dt

 

€ 

+(0)
dθE
dt

+ (−sin JE cosθE cosΩ + cos JE sinθE )
dφ
dt

 

 

€ 

=
L
H

An
n=0

4

∑ cos nΩ +
K1
H

Fn
n=0

4

∑ cos nΩ        (A3) 

 

where 

 

€ 

Fn
n=0

2

∑ cos nΩ = (s ⋅ c)[cos φ(cysz − czsy )+ sin φ(czsx − cxsz )]     

 

with 

 

4F0 = −2cos2 JE sin 2θE + sin2 JE sin 2θE  

 

4F1 = −4sin JE cos JE cos 2θE 

 

and 

 

€ 

−(cos JE cosΩ)
dJE
dt

+ (sin JE sinΩ)
dΩ
dt

 

€ 

+(cos JE )
dθE
dt

+ (sin JE cosθE sinΩ)
dφ
dt
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€ 

=
L
H

En
n=1

4

∑ sin nΩ +
K1
H

Gn
n=1

4

∑ sin nΩ        (A4) 

 

where 

 

€ 

En
n=1

4

∑ sin nΩ = (b ⋅ s){cosθE[sin φ (sybz − szby ) 

€ 

−cos φ (szbx − sxbz )]− sinθE (sxby − sybx )} 

 

€ 

Gn
n=1

2

∑ sin nΩ = (s ⋅ c){cosθE[sin φ (cysz − czsy ) 

€ 

−cos φ (czsx − cxsz )]− sinθE (cxsy − cysx )} 

 

with 

 

16E1 = − 16 sin JE cos2 JM cos JE [cos2 (θE−θM)] − 16 sin JM cos JM cos2 JE [cos (θE−θM)] 

+ 4sin JM sin2 JE cos JM [3cos (θE−θM)+ 4cos 2(θE−θM)] + 4sin2 JM sin JE cos JE [3 − sin2 

(θE−θM)+ cos (θE−θM)]  

 

4G1 = 4sin JE cos JE cos2 θE  . 

 

The rate of change of JM will be written 

 

€ 

dJM
dt

= jM1 sinΩ + jM 2 sin 2Ω + jM 3 sin 3Ω = jMn
n=1

3

∑ sin nΩ     (A5) 

 

so that the first term on the left side of (A2), for example, becomes 
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cos JM cos Ω (dJM/dt) = cos JM [jM2 sin Ω + (jM1+jM3) sin 2Ω + jM2 sin 3Ω + jM3 sin 4Ω]/2 . 

 

Similarly, 

 

€ 

dJE
dt

= jEn
n=1

3

∑ sin nΩ          (A6) 

 

€ 

dθM

dt
= θMn

n=1

3

∑ sin nΩ          (A7) 

 

€ 

dθE
dt

= θEn
n=1

3

∑ sin nΩ   .         (A8) 

 

 

The rate of change of the angles Ω and φ will be written  

 

€ 

dΩ
dt

= ˙ Ω 0 +Ω1 cosΩ +Ω2 cos 2Ω +Ω3 cos 3Ω = ˙ Ω 0 + Ωn
n=1

3

∑ cos nΩ    (A9) 

 

€ 

dφ
dt

= ˙ φ 0 + φn
n=1

3

∑ cos nΩ   .        (A10) 

 

where the first terms reflect the fact that these angles have secular as well as periodic 

terms for low inclinations (the dot over a quantity means time derivative.) The rationale 

for writing (A5)-(A8) with sines and (A9)-(A10) with cosines is that it is well-known that 

there are no secular trends in JM, JE, θM, and θE without tidal torques; mixing sines and 

cosines would produce such trends. 
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Equations (A5)-(A10) are to be substituted on the left sides of (A1)-(A4) and all 

terms on both sides contain cos nΩ or sin nΩ, where n = 0, 1, 2… . After making the 

substitutions, equating the n = 0 terms on each side of (A1) gives 

 

jM1 cos JM = −Ω1 sin JM − φ1 sin JM cos θM  

− 2

€ 

˙ φ 0 cos JM sin θM − 2(L/h) A0 + 2(K2/h) C0       (A11) 

 

while doing the same with (A3) yields 

 

jE1 cos JE = −Ω1 sin JE − φ1 sin JE cos θE  

− 2

€ 

˙ φ 0 cos JE sin θE + 2(L/H) A0 +2(K1/H) F0  .     (A12) 

 

From this point forward it will be assumed that jM1 = θM1 = jE1= θE1 = φ1 = Ω1 = 0. The 

reason for making this choice is to be rid of terms in sin Ω and cos Ω in (A5) – (A10), so 

that JM and JE are constant in the summations to n = 1. The choice elicits the Laplace 

plane parameters, as shown next. 

From (A11) and (A12) clearly 

 

€ 

˙ φ 0  = [(L/H) A0 + (K1/H) F0]/(cos JE sin θE) 

       = [−(L/h) A0 + (K2/h) C0]/(cos JM sin θM)     (A13) 

 

which gives (13) when A0 and C0 are substituted in the above equation. On the other 

hand, eliminating 

€ 

˙ φ 0  in (A11) and (A12) using (A13) yields 

 

cos JE sin θE [− A0 + (K2/L) C0] = cos JM sin θM [(h/H) A0 + (hK1/LH) F0]  . 

 

The above equation gives a relationship between JM, θM, JE, and θE. Assuming that JM and 

JE are small in the above equation so that sin JM ≈ sin JE ≈ 0, cos JM ≈ cos JE ≈ cos θM ≈ 

cos θE ≈ 1, and using the expressions for A0, C0, and F0 give 
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(1/2) sin θE sin [2(θE−θM)] − (K2/L) sin θE sin θM  

= −(h/2H) sin θM sin [2(θE−θM)] − (h/H) (K1/L) sin θE sin θM 

 

to second order in the sines. Using sin (2θE−θM) ≈ 2sin θE − 2sin θM allows the above 

equation to be rewritten 

 

sin2 θE − sin θE sin θM − (K2/L) sin θE sin θM +(h/H) (sin θM sin θE − sin2 θM)  

+ (h/H) (K1/L) sin θE sin θM = 0  . 

 

Writing sin θM = α sin θE as in (15) finally yields the quadratic equation 

 

€ 

α2 + − 1+
K1
L

$ 

% 
& 

' 

( 
) +

H
h

$ 

% 
& 

' 

( 
) 1+

K2

L
$ 

% 
& 

' 

( 
) 

* 

+ 
, 

- 

. 
/ α −

H
h

= 0       (A14) 

 

which has the solution given by (17). Differentiating this equation with respect to time t 

gives 

 

 

dα
dt

=
αh

h
dh
dt
+
αH

H
dH
dt

         (A15) 

 

where 

 

αh =

H
h

!

"
#

$

%
& −1+ 1+ h

H
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$
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&
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.
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αH =

H
h
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#

$

%
& 1− 1−

K2

L
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$

%
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       (A17) 

 

after using 

 

d K1
L

!

"
#

$

%
&

dt
= 6 K1

L
!

"
#

$

%
&
1
h
dh
dt

!

"
#

$

%
&         (A18) 

 

d K2

L
!

"
#

$

%
&

dt
=

K2

L
!

"
#

$

%
&
10
h
dh
dt
−
2
H
dH
dt

!

"
#

$

%
&        (A19) 

 

and 

 

d H
h

!

"
#

$

%
&

dt
=

H
h

!

"
#

$

%
& −

1
h
dh
dt
+
1
H
dH
dt

!

"
#

$

%
&   .       (A20) 

 

The derivation of (A19) assumes that J2 is proportional to the square of the rotation rate 

of the Earth as given by (50). 

 

For the n = 1 terms in (A1) and (A2), after multiplying by 2 one gets 

 

jM2 cos JM = −sin JM (2

€ 

˙ Ω 0 + Ω2) 

 − sin JM cos θM (2

€ 

˙ φ 0 + φ2) − 2(L/h) A1 + 2(K2/h) C1     (A21) 

 

and 
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jM2 cos JM = sin JM (2

€ 

˙ Ω 0− Ω2) 

 + sin JM cos θM (2

€ 

˙ φ 0− φ2) − 2(L/h) B1 + (K2/h) D1  .     (A22) 

 

Subtracting (A22) from (A21) one gets 

 

− 2

€ 

˙ Ω 0 sin JM −2

€ 

˙ φ 0  sin JM cos θM = (L/h) (A1 − B1) − (K2/h) (C1 − D1)  .  (A23) 

 

Using (A13) in (A23) gives 

 

€ 

˙ Ω 0  = [−(L/h)(A1 − B1) + (K2/h)(C1 − D1)]/(2sin JM) 

           − cos θM [(L/H) A0 + (K1/H)F0]/(cos JE sin θE)    (A24) 

 

which yields (14). The Earth equations corresponding to (A21) and (A22) are  

 

−jE2 cos JE = sin JE (2

€ 

˙ Ω 0 + Ω2) 

 + sin JE cos θE (2

€ 

˙ φ 0 + φ2) + 2(L/H) A1 + 2(K1/H) F1 

 

−jE2 cos JE = −sin JE (2

€ 

˙ Ω 0− Ω2) 

 − sin JE cos θE (2

€ 

˙ φ 0− φ2) + 2(L/H) E1 + 2(K1/H) G1  . 

 

Subtracting one equation from the other gives 

 

− 2

€ 

˙ Ω 0 sin JE −2

€ 

˙ φ 0  sin JE cos θE = (L/H) (A1 − E1) + (K1/H) (F1 − G1)  .  (A25) 

 

Multiplying (A23) by sin JE and (A25) by sin JM and eliminating Ω2 and φ2 by 

subtracting gives  
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(L/h) (A1 − B1) sin JE − (K2/h) (C1 − D1) sin JE + 2

€ 

˙ φ 0  sin JM sin JE cos θM  

=  (L/H) (A1 − E1) sin JM + (K1/H) (F1 − G1) sin JM + 2

€ 

˙ φ 0  sin JM sin JE cos θE  . (A26) 

 

Now A1 − B1 ≈ A1 − E1 ≈ 2sin JM + 2sin JE, C1 − D1 ≈ −2 sin JM, F1 − G1 ≈ −2 sin JE, and 

cos θM ≈ cos θE ≈ 1 to first order in the sines. Using these expressions in (A26), retaining 

only terms to second order in the sines, and dividing by sin2 JM eventually yields 
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after remembering sin JE = β sin JM. The terms with 

€ 

˙ φ 0  drop out. The solution to (A27) is 

given by (18). Differentiating this equation with respect to time gives equations 

analogous to (A15) and (A17): 
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where 
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after using 
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Appendix B 

 

The torques appear in (30), (32), (34), and (36). In the (x, y, z) system TM = TMxx 

+ TMyy + TMzz. These components are related to those in the (xLM, yLM, zLM) by 

 

TM⋅x = TMx = 

€ 

TMxLM cos φM − 

€ 

TMyLM cos θM sin φM + 

€ 

TMzLM sin θM sin φM 

 

TM⋅y = TMy = 

€ 

TMxLM sin φM + 

€ 

TMyLM cos θM cos φM − 

€ 

TMzLM sin θM cos φM 

 

TM⋅z = TMz = 

€ 

TMyLM sin θM + 

€ 

TMzLM cos θM  . 

 

The torque components (TM1, TM2, TM3) in the (xµ, yµ, zµ) system are related to those in 

the (xLM, yLM, zLM) system by 

 

€ 

TMxLM  = TM1 cos ΩM − TM2 cos JM sin ΩM + TM3 sin JM sin ΩM 

 

€ 

TMyLM  = TM1 sin ΩM + TM2 cos JM cos ΩM − TM3 sin JM cos ΩM 
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€ 

TMzLM  = TM2 sin JM + TM3 cos JM  . 

 

These equations lead to 

 

RMA = (TM1/h) cos ΩM − (TM2/h) cos JM sin ΩM 

 

RMB = −(TM1/h) sin ΩM − (TM2/h) cos JM cos ΩM 

 

REA = (TE1/H) cos ΩE − (TE2/H) cos JE sin ΩE 

 

REB = −(TE1/H) sin ΩE − (TE2/H) cos JE cos ΩE 

 

Substituting the above four equations in (43) and (44), using the expressions (A15) for 

dα/dt and (A28) for dβ/dt in Appendix A, and remembering (38) yield 

 

dJM
dt

≈ −
1

(1+αβ)h
!

"
#

$

%
& TM 2 +α

h
H
!

"
#

$

%
&TE2

!
"
#

+ αhTM 3 +αH
h
H
!

"
#

$

%
&TE3

!

"
#

$

%
&sinθE cosΩ  

 

+α βhTM 3 +
h
H
!

"
#

$

%
&TE3

'

(
)

*

+
,sin JM

-
.
/

       (B1) 

 

 

dθE
dt

≈ +
1

(1+αβ)h
"

#
$

%

&
' −β TM1 sinΩ +TM 2 cosΩ[ ]+ h

H
"

#
$

%

&
' TE1 sinΩ +TE2 cosΩ[ ]

)
*
+

 

 

+ βhTM 3 +βH
h
H
!

"
#

$

%
&TE3

'

(
)

*

+
,sin JM cosΩ −β αhTM 3 +αH

h
H
!

"
#

$

%
&TE3

'

(
)

*

+
,sinθE

.
/
0

 (B2) 

 

The task now is to find TE1, TE2, and TE3. The torque on the Moon’s orbit is 

 

TM = TMM1 + TSM1 + TMM2 + TSM2 + TMM3 + TSM3 
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= TM1µ1 + TM2µ2 + TM3µ3         

 

where clearly TM1 = TMM1 + TSM1, TM2 = TMM2 + TSM2, and TM3 = TMM3 + TSM3, and once 

again it is to be remembered that the first subscript refers to the object that raises the tides 

on the Earth, and the second subscript refers to the body acted upon by those tides. 

 The torque on the Sun’s orbit is 

 

TS = TSS1 + TMS1 + TSS2 + TMS2 + TSS3 + TMS3 

 

= TS1κ1 + TS2κ2 + TS3κ3 

 

= (TSS1 + TMS1)κ1 + (TSS2 + TMS2)κ2 + (TSS3 + TMS3)κ3  . 

 

where κ1, κ2, and κ3 are the unit vectors for the Sun’s coordinate system, analogous to 

µ1, µ2, and µ3 for the Moon. 

The torque on the Earth is 

 

TE = TE1ξ1 + TE2ξ2 + TE3ξ3  

= (TME1 + TSE1)ξ1 + (TME2 + TSE2)ξ2 + (TME3 + TSE3)ξ3      

 

where by conservation of angular momentum 

 

TE1 = TE⋅ξ1 = −(TM +TS)⋅ξ1 = −[TM1(µ1⋅ξ1) + TM2(µ2⋅ξ1) + TM3(µ3⋅ξ1)] 

                      − [TS1(κ1⋅ξ1) + TS2(κ2⋅ξ1) + TS3(κ3⋅ξ1)] 

 

= −[(TMM1+TSM1)(µ1⋅ξ1) + (TMM2 + TSM2)(µ2⋅ξ1) + (TMM3 + TSM3)(µ3⋅ξ1)] 

   − [(TSS1 + TMS1)(κ1⋅ξ1) + (TSS2 + TMS2)(κ2⋅ξ1) + (TSS3 + TMS3)(κ3⋅ξ1)]  
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with similar expressions for TE2 and TE3. For the Moon and Earth, the unit vectors (µ1, 

µ2, µ3) and (ξ1, ξ2, ξ3) are related to the (xLM, yLM, zLM) and (xLE, yLE, zLE) coordinate 

systems by 

 

µ1 = xLM cos ΩM + yLM sin ΩM 

 

µ2 = −xLM cos JM sin ΩM + yLM cos JM cos ΩM + zLM sin JM 

 

µ3 = b = xLM sin JM sin ΩM − yLM sin JM cos ΩM + zLM cos JM 

 

and 

 

ξ1 = xLE cos ΩE + yLE sin ΩE 

 

ξ2 = −xLE cos JE sin ΩE + yLE cos JE cos ΩE + zLE sin JE 

 

ξ3 = s = xLE sin JE sin ΩE − yLE sin JE cos ΩE + zLE cos JE 

 

and 

 

xLE = xLM 

 

yLE = yLM cos d* + zLM sin d* 

 

zLE = −yLM sin d* + zLM cos d*  . 

 

where  

 

d* = θE − θM  . 
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The corresponding equations for the Sun are 

 

κ1 = xLS cos ΩS + yLS sin ΩS 

 

κ2 = −xLS cos JS sin ΩS + yLS cos JS cos ΩS + zLS sin JS 

 

κ3 = xLS sin JS sin ΩS − yLS sin JS cos ΩS + zLS cos JS  . 

 

It is assumed here that the Sun’s orbit always lies in the x-y plane of Fig. 1. This is 

insured by setting θS = θE, JS = θE, and ΩS = π, so that κ3 = c. Hence for the Sun d* = θE 

− θS = θE − θE = 0. Relaxing these conditions may be a way of treating changes in the 

orientation of the ecliptic from planetary perturbations.; but this will not be pursued here. 

The inner products (µ1⋅ξ1), (µ2⋅ξ1), … and (κ1⋅ξ1), (κ2⋅ξ1), … etc., will be written 

in the form 

 

(µ1⋅ξ1) = 

€ 

U fg
M1,ξ1 cos ( fΩM +

g=−1

1

∑
f =0

1

∑ gΩE )  

 

with corresponding expressions for (µ2⋅ξ1), (µ3⋅ξ1), (µ1⋅ξ2), etc. Thus 

 

(TM1)⋅ξ1 = 

€ 

TM1 U fg
M1,ξ1 cos ( fΩM +

g=−1

1

∑
f =0

1

∑ gΩE ) 

 

                + 

€ 

TM 2 U fg
M 2,ξ1 sin ( fΩM

g=−1

1

∑
f =0

1

∑ + gΩE )  

 

                  + 

€ 

TM 3 U fg
M 3,ξ1 sin ( fΩM

g=−1

1

∑
f =0

1

∑ + gΩE )  

 

with analogous expressions for the dot-products with ξ2 and ξ3. The equation above can 

be collapsed into the expression 
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TM⋅ξ1 = TMσ
g=−1

1

∑ Ufg
Mσ ,ξ1 sin [ fΩM +

f =0

1

∑
σ=1

3

∑ gΩE +δσ1(π / 2)]  

 

where δij is the Kronecker delta (δij = 1 if i = j and is zero otherwise). Likewise 

 

TM⋅ξ2 = 

€ 

TMσ
g=−1

1

∑ U fg
Mσ ,ξ2 cos [ fΩM +

f =0

1

∑
σ =1

3

∑ gΩE −δσ1(π / 2)] 

 
and 
 

TM⋅ξ3 = 

€ 

TMσ
g=−1

1

∑ U fg
Mσ ,ξ 3 cos [ fΩM +

f =0

1

∑
σ =1

3

∑ gΩE −δσ1(π / 2)]  . 

 

Similarly 

 

(TM⋅ξ1) sin ΩE = 

€ 

TMσ
g=−2

2

∑ Wfg
Mσ ,ξ1 cos [ fΩM +

f =0

1

∑
σ =1

3

∑ gΩE −δσ1(π / 2)] 

 

(TM⋅ξ2) cos ΩE = 

€ 

TMσ
g=−2

2

∑ Wfg
Mσ ,ξ2 cos [ fΩM +

f =0

1

∑
σ =1

3

∑ gΩE −δσ1(π / 2)] 

 

(TM⋅ξ3) cos ΩE = 

€ 

TMσ
g=−2

2

∑ Wfg
Mσ ,ξ 3 cos [ fΩM +

f =0

1

∑
σ =1

3

∑ gΩE −δσ1(π / 2)]  . 

 

The corresponding U- and W- functions for the Sun will be denoted by 

€ 

U fg
Sσ ,ξ1, 

€ 

Wfg
Sσ ,ξ2 , 

etc.; so that, for example 

 

(TS⋅ξ1) sin ΩE = TSσ
g=−2

2

∑ Wfg
Sσ ,ξ1 cos [ fΩS +

f =0

1

∑
σ=1

3

∑ gΩE −δσ1(π / 2)]  

 

and it is to be remembered that ΩE is related to Ω by (38). The inner products (µ1⋅ξ1), 

(µ2⋅ξ1), … and (κ1⋅ξ1), (κ2⋅ξ1), … etc., which make up the 

€ 

U fg
M1,ξ1 , 

€ 

U fg
M 2,ξ1 , … and 

€ 

U fg
S1,ξ1, 

€ 

U fg
S2,ξ1 … functions are easily found from the above equations (Table B1), as are the 
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€ 

Wfg
M1,ξ1, 

€ 

Wfg
M 2,ξ1, … and 

€ 

Wfg
S1,ξ1 , 

€ 

Wfg
S2,ξ1  … functions which are made up of the inner 

products multiplied by sin ΩE or cos ΩE (Table B2). 

 

 

Appendix C 

 

 The torques are found from tidal potentials. The Moon and Sun each incur a tide-

raising potential which acts on the Earth. The Earth deforms, creating a tidal potential 

which reacts back on the Moon and Sun. 

The tide-raising potential V* acting on the Earth due to a body with mass M* 

(Moon or Sun) at some point P is (e.g., Kaula, 1964) 

 

V *(r,Θ) = GM *
r *

r
r *
"

#
$

%

&
'

l=2

+∞

∑
l

Pl(cosΘ)            (C1) 

 

where G is the universal constant of gravitation, r* is the distance from the center of the 

Earth to the center of the tide-raising body, r is the distance from the center of the Earth 

to P, and Θ is the angle between the line joining the Earth’s center to M* and the line 

joining the Earth’s center to P. Pl(cos Θ) is the Legendre polynomial of degree l. Let θ 

be the colatitude and λ be the east longitude of P in an Earth-fixed frame (xE, yE, zE). The 

(xE, yE, zE) frame is rigidly attached to the rotating Earth, with the zE-axis being the 

rotation axis and the xE- and yE-axes lying in the equator, with the xE-axis passing through 

a fixed point on the equator (at the longitude of “Greenwich”). Also, let θ* and λ* be the 

colatitude and east longitude of M* in the Earth-fixed frame; then by the addition 

theorem (Kaula, 1964), the l =2 part of the potential of the above equation can be written 

 

€ 

V *(r,θ,λ) =
GM *
r *

r
r*
$ 

% 
& 

' 

( 
) 
2 (2 −δ0m )(2 −m)!

(2+m)!m=0

2

∑
i=1

2

∑ Y2mi (θ*,λ*)Y2mi (θ,λ)       (C2) 
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where Ylm1(θ, λ) ≡ Plm (cos θ) cos mλ and Ylm1(θ, λ) ≡ Plm (cos θ) sin mλ are spherical 

harmonics of degree l and order m, with Plm(cos θ) being the associated Legendre 

polynomial and δ0m being the Kronecker delta. 

 The following two equations can be extracted from Kaula (2000, pp. 30-37) for 

the second degree harmonics: 

 

€ 

Y2n1(θ # * ,λ # * )
(r*)3 =

1
(a*)3 G2 pq (e*)F2np

q=−∞

+∞

∑
p=0

2

∑ (J*) 

 

€ 

⋅ sin
cos[ ]

2−n odd

2−n even
[(2 − 2p)ω *+(2 − 2p + q)M *+nΩ*]         (C3) 

 

€ 

Y2n2 (θ # * ,λ # * )
(r*)3 =

1
(a*)3 G2 pq (e*)F2np

q=−∞

+∞

∑
p=0

2

∑ (J*) 

 

€ 

⋅ −cos
sin$ 

% & 
' 
( ) 2−n odd

2−n even

[(2 − 2p)ω *+(2 − 2p + q)M *+nΩ*]         (C4) 

 

 Combining these equations (C2) and (C3) with the expressions relating the second 

degree spherical harmonics of one frame with those of another (Appendix D) yields 

 

€ 

Y2mi (θ*,λ*)
(r*)3

=
1

(a*)3
G2 pq(e*)F2np(J*)

γ=1

2

∑
j=−2

+2

∑
q=−∞

+∞

∑
p=0

2

∑
n=0

2

∑ B2minjγ (JE*,d*)  

 

€ 

⋅ cos
sin[ ]

m+i odd

m+i even
[(2 − 2p)ω *+(2 − 2p + q)M *+nΩ *+ jΩE + (−1)γ mψ*]       (C4) 

 

where  

 

d* = θE − θM              (C5) 

 

or 
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d* = θE − θS              (C6) 

 

depending upon whether the Moon or the Sun is the tide-raising body. Also, ψ* is the 

rotation angle of “Greenwich” and takes care of the Earth rotating on its axis. The 

€ 

B2minjγ (JE
* ,d* ) are derived from the rotation matrix given in Appendix D. Below it will be 

shown only the i = 1 values are needed in 

€ 

B2minjγ (JE
* ,d* ); these are given in Appendix D 

to zeroth- and first-order in the angles. Moreover, 

€ 

JE
*  = JE. 

The body being acted upon by the tides will be denoted by variables without the 

asterisk (*), so that the spherical harmonics for that body are 

 

€ 

Y2mi (θ,λ)
r 3 =

1
a3 G2PQ(e)F2 NP ( ˜ J )

Γ=1

2

∑
J=−2

+2

∑
Q=−∞

+∞

∑
P=0

2

∑
N =0

2

∑ B2miNJΓ (JE ,d) 

 

€ 

⋅ cos
sin[ ]

m+i odd

m+i even
[(2 − 2P)ω + (2 − 2P +Q)M + NΩ + JΩE + (−1)Γ mψ]  .       (C7) 

 

Here ψ = ψ* (Kaula, 1964; Efroimsky and Williams, 2009) and 

€ 

˜ J  is the inclination of 

the body being acted upon, so that 

€ 

˜ J  is equal to JM or JS. (The tilde (~) is necessary to 

distinguish this variable from the index J used in the summation.) 

The tide-raising potential V* distorts the Earth. The distorted Earth in turn 

produces the tidal potential V. The tidal potential V at a point (r, θ, λ) in space is related 

to the tide-raising potential V* by  

 

V = [kV*(RE, θ, λ)]lag(RE
3/r3)            (C8) 

 

for a linear response, where [kV*(RE, θ, λ)]lag symbolically denotes the tide-raising 

potential at the Earth’s surface multiplied by an appropriate Love number k and lagged in 

time (Kaula, 1964). If the tidal potential V acts on an object (the Moon or Sun) at (r, θ, 

λ), which has Keplerian elements (a ,e ,I, Ω, ω, 

€ 

M ), then by (C4)-(C8) the tidal potential 

becomes 
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€ 

V =
GM * RE

5

a3(a*)3 G2 pq (e*)G2PQ(e)F2np (J*)F2 NP
Q=−∞

+∞

∑
q=−∞

+∞

∑
P=0

2

∑
p=0

2

∑
N =0

2

∑
n=0

2

∑ ( ˜ J ) 

 

€ 

(2 −δ0m )(2 −m)!
2(2+m)!m=0

2

∑
i=1

2

∑
Γ=1

2

∑
γ=1

2

∑
J=−2

2

∑
j=−2

2

∑

€ 

k2minjγpq
* B2minjγ (JE*,d*)B2miNJΓ (JE ,d) 

 

€ 

•{cos{(2 − 2p)ω *+(2 − 2p + q)M *+nΩ *+ jΩE + (−1)γ mψ *+δ2minjγpq
∗  

 

€ 

−[(2 − 2P)ω + (2 − 2P +Q)M + NΩ + JΩE + (−1)Γ mψ]}  
 

€ 

±
m=i

m≠i
[cos{(2 − 2p)ω *+(2 − 2p + q)M *+nΩ *+ jΩE + (−1)γ mψ *+δ2minjγpq

∗  
 

€ 

+[(2 − 2P)ω + (2 − 2P +Q)M + NΩ + JΩE + (−1)Γ mψ]}}        (C9) 
 

where 

€ 

k2minjγpq
*  is the Love number and 

€ 

δ2minjγpq
*  is the lag angle. 

Both the Love number and the lag angle depend on the frequencies of the tide-

raising object, with their values determined by whatever rheological model is assumed. 

The asterisks (*) on 

€ 

k2minjγpq
*  and 

€ 

δ2minjγpq
*  are a reminder that they are associated with 

frequencies of the tide-raising body, and not the body acted upon by V. Originally Kaula 

(1964) defined the lag angle 

€ 

δ2minjγpq
*  with the sign opposite to that here. Lambeck (1980, 

p. 118) later reversed the sign convention, so that the lag angle of the major M2 tide ( for 

which m = 2, p = q = 0, γ = 1) has a positive value. This paper follows Lambeck’s 

convention. Also, to save space 

 

A 2mnjγ pq
* = (2− 2p)ω *+(2− 2p+ q)M *+nΩ*+ jΩE + (−1)

γmψ *  

 

  

€ 

A 2mNJΓPQ = (2 − 2P)ω + (2 − 2P +Q)M + NΩ + JΩE + (−1)Γ mψ  
 

are used in the equations below. 

The expression for V can be considerably simplified. First, it is assumed that the 

Earth has isotropic properties, so that the subscript i is banished from the subscripts on 
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the Love numbers and lag angles. Second, the potential is then split into two parts: V = 

Vm=0 + Vm>0, where 

 

€ 

Vm=0 =
GM * RE

5

2a3(a*)3 G2 pq (e*)G2PQ(e)F2np (J*)F2 NP
Q=−∞

+∞

∑
q=−∞

+∞

∑
P=0

2

∑
p=0

2

∑
N =0

2

∑
n=0

2

∑ ( ˜ J ) 

 

€ 

Γ=1

2

∑ k20njγpq
*

γ=1

2

∑
J=−2

2

∑
j=−2

2

∑ B201njγ (JE*,d*)B201NJΓ (JE ,d) 

 

[cos(A 20njγ pq
* +δ20njγ pq

* − A 20NJΓPQ )+ cos(A 20njγ pq
* +δ20njγ pq

* + A 20NJΓPQ )]  

 

and 

 

Vm>0 =
GM *RE

5

a3(a*)3
G2 pq (e*)G2PQ (e)F2np(J*)F2NP

Q=−∞

+∞

∑
q=−∞

+∞

∑
P=0

2

∑
p=0

2

∑
N=0

2

∑
n=0

2

∑ ( %J )  

 

(2−m)!
(2+m)!m=1

2

∑
i=1

2

∑
Γ=1

2

∑ k2mnjγ pq
*

γ=1

2

∑
J=−2

2

∑
j=−2

2

∑ B2min jγ (JE*,d*)B2miNJΓ (JE,d)  

 

⋅[cos(A 2mnjγ pq
* +δ2mnjγ pq

* − A 2mNJΓPQ ) ±m=i
m≠i
cos(A 2mnjγ pq

* +δ2mnjγ pq
* + A 2mNJΓPQ )]  

 

Next, i is summed over in (C11): 

 

€ 

Vm>0 =
GM * RE

5

a3(a*)3 G2 pq (e*)G2PQ(e)F2np (J*)F2 NP
Q=−∞

+∞

∑
q=−∞

+∞

∑
P=0

2

∑
p=0

2

∑
N =0

2

∑
n=0

2

∑ ( ˜ J ) 

 

€ 

(2 −m)!
(2+m)!m=1

2

∑
Γ=1

2

∑
γ=1

2

∑ k2mnjγpq
* [B2m1njγ (JE*,d*)B2m1NJΓ (JE ,d)

J=−2

2

∑
j=−2

2

∑  

 

⋅[cos(A 2mnjγ pq
* +δ2mnjγ pq

* − A 2mNJΓPQ )+ (−1)
m cos(A 2mnjγ pq

* +δ2mnjγ pq
* + A 2mNJΓPQ )]  
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+B2m2njγ (JE*,d*)B2m2NJΓ (JE,d)  
 

⋅[cos(A 2mnjγ pq
* +δ2mnjγ pq

* − A 2mNJΓPQ )+ (−1)
m+1 cos(A 2mnjγ pq

* +δ2mnjγ pq
* + A 2mNJΓPQ )]   . 

 

It turns out that 

 

€ 

B2m2njγ (JE
* ,d* ) = (−1)m+γ−1B2m1njγ (JE

* ,d* )   for m > 0 
 

so that 

 

€ 

Vm>0 =
GM * RE

5

a3(a*)3 G2 pq (e*)G2PQ(e)F2np (J*)F2 NP
Q=−∞

+∞

∑
q=−∞

+∞

∑
P=0

2

∑
p=0

2

∑
N =0

2

∑
n=0

2

∑ ( ˜ J ) 

 

€ 

(2 −m)!
(2+m)!m=1

2

∑
Γ=1

2

∑
γ=1

2

∑ k2mnjγpq
* [1+ (−1)γ+Γ ]B2m1njγ (JE*,d*)B2m1NJΓ (JE ,d)

J=−2

2

∑
j=−2

2

∑  

 

⋅[cos(A 2mnjγ pq
* +δ2mnjγ pq

* − A 2mNJΓPQ )]  

 

€ 

+(−1)m[1+ (−1)γ+Γ−1]B2m1njγ (JE*,d*)B2m1NJΓ (JE ,d)  
 

⋅[cos(A 2mnjγ pq
* +δ2mnjγ pq

* + A 2mNJΓPQ )]   . 

 

This is can be rewritten 

 

€ 

Vm>0 =
GM * RE

5

a3(a*)3 G2 pq (e*)G2PQ(e)F2np (J*)F2 NP
Q=−∞

+∞

∑
q=−∞

+∞

∑
P=0

2

∑
p=0

2

∑
N =0

2

∑
n=0

2

∑ ( ˜ J ) 

 
(2−m)!
(2+m)!m=1

2

∑
Γ =1

2

∑
γ=1

2

∑ k2mnjγ pq
* B2m1njγ (JE*,d*)B2m1NJΓ (JE,d)

J=−2

2

∑
j=−2

2

∑  

 

⋅{[1+ (−1)γ+Γ ][cos(A 2mnjγ pq
* +δ2mnjγ pq

* − A 2mNJΓPQ )]  
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+(−1)m[1+ (−1)γ+Γ −1][cos(A 2mnjγ pq
* +δ2mnjγ pq

* + A 2mNJΓPQ )]  

 

Next Γ is summed over, yielding (45), which is one of the fundamental equations of this 

paper. It is to be noted that ψ and ψ* disappear in the trigonometric arguments in (45) 

because ψ = ψ* (Efroimsky and Williams, 2009) and they are subtracted from each other 

in the nonzero terms. 

 

Appendix D 

 

This appendix finds the relationship between the second degree spherical 

harmonics in some system (xE, yE, zE) to those of some other system (xʹ′,yʹ′,zʹ′). For any 

general coordinate system (x, y, z) 

 

r2 = x2 + y2 + z2 

 

r2Y201(θ,λ) = z2 − (x2 + y2)/2 

 

r2Y202(θ,λ) ≡ 0 

 

r2Y211(θ,λ) = 3xz 

 

r2Y212(θ,λ) = 3yz 

 

r2Y221(θ,λ) = 3x2 − 3y2 

 

r2Y222(θ,λ) = 6xy 

 

The following relations are also helpful: 
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x2

r2
=
1
3
−
1
3
Y201(θ,λ ) +

1
6
Y221(θ ,λ ) , 

 

y2

r2
=
1
3
−
1
3
Y201(θ,λ ) −

1
6
Y221(θ,λ ) , 

 

z2

r 2
=
1
3
+
2
3
Y201(θ,λ ) , 

 

Let the x, y, z coordinates be related to those of the (xʹ′,yʹ′,zʹ′) system by X = CX’, where C 

is the rotation matrix; then 

 

Y201(θ,λ) = [(4c33
2 − 2c31

2 − 2c32
2)/4] Y201(θʹ′,λʹ′) 

                      + (c31c33) Y211(θʹ′,λʹ′) 

                        +(c32c33) Y212(θʹ′,λʹ′) 

                        +[(c31
2 − c32

2)/4] Y221(θʹ′,λʹ′) 

                         

 

Y211(θ,λ) = (2 c13c33 − c11c31 − c12 c32) Y201(θʹ′,λʹ′) 

                      + (c13c31 + c11c33) Y211(θʹ′,λʹ′) 

                        + (c13c32 + c12c33) Y212(θʹ′,λʹ′) 

                       + [(c11c31 − c12c32)/2] Y221(θʹ′,λʹ′) 

                        +  [(c12c31 + c11c32)/2] Y222(θʹ′,λʹ′) 

 

Y212(θ,λ) = (2 c23c33 − c21c31 − c22 c32) Y201(θʹ′,λʹ′) 

                      + (c21c33 + c23 c31) Y211(θʹ′,λʹ′) 

                        + (c23c32 + c22c33) Y212(θʹ′,λʹ′) 

                       + [(c21c31 − c22c32)/2] Y221(θʹ′,λʹ′) 

                        +  [(c22c31 + c21c32)/2] Y222(θʹ′,λʹ′) 
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Y221(θ,λ) = (2c13
2 − 2c23

2 − c11
2 + c21

2 − c12
2 + c22

2 ) Y201(θʹ′,λʹ′) 

                        +2( c11c13 − c21c23) Y211(θʹ′,λʹ′) 

                        + 2( c12c13 − c22c23) Y212(θʹ′,λʹ′) 

                        + [(c11
2 − c21

2 − c12
2 + c22

2 )/2] Y221(θʹ′,λʹ′) 

                        +  (c11c12 − c21c22 ) Y222(θʹ′,λʹ′) 

 

Y222(θ,λ) = (4c13c23 − 2c11c21 − 2c12 c22) Y201(θʹ′,λʹ′) 

                      + 2(c13c21 + c11c23) Y211(θʹ′,λʹ′) 

                        + 2(c13c22 + c12c23) Y212(θʹ′,λʹ′) 

                       + (c11c21 − c12c22) Y221(θʹ′,λʹ′) 

                        + (c12c21 + c11c22) Y222(θʹ′,λʹ′) 

 

Choosing the tide-raising body’s Laplace plane system as the primed system and writing 

in matrix form xE = (xE, yE, zE)T and x* = (x*, y*, z*)T,  the relationship between the two 

systems is 

 

XE = CX* where C = AB. 

 

The elements aij of the rotation matrix are given by 

 

a11 = cos ΩE cos ψ − cos JE sin ΩE sin ψ 

a12 = sin ΩE cos ψ + cos JE cos ΩE sin ψ 

a13 = sin JE sin ψ 

a21 = −cos ΩE sin ψ − cos JE sin ΩE cos ψ 

a22 = −sin ΩE sin ψ + cos JE cos ΩE cos ψ 

a23 = sin JE cos ψ 

a31 = sin JE sin ΩE 

a32 = −sin JE cos ΩE 

a33 = cos JE 
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where ψ is the rotation angle from “Greenwich”, and b11 =1, b22 = b33 = cos d*, b23 = sin 

d* = −b32 where d* = θE − θM or d* = θE − θS, depending on which body is the tide-

raising object. All the other bij =0. The B matrix transforms from the Laplace plane frame 

of the tide-raising body into the Laplace plane frame of the Earth. The A matrix 

transforms from the Earth’s Laplace plane frame into the (xE, yE, zE) rigidly fixed in the 

Earth. The transformations give rise to the B2m1njγ(JE, d) functions; those used here are 

listed in Table 1. 

 

Appendix E 

 

The equations for dJM/dt and dθE/dt for the nodal and semiannual tides are given 

below. The right sides are left in terms of the sines rather than just the approximation sin 

JM ≈ JM, etc. For the nodal tides, 

 

dJM
dt

=
9GMM

2

16REh
RE
a

!

"
#

$

%
&
6 1
1+αβ
!

"
#

$

%
&  

 

⋅ − 1+α h
H
#

$
%

&

'
(

)

*
+

,

-
.(sin2 2d *sin JM )knode

M sin δnode
M

/
0
1

 

 

+
MS

MM

!

"
#

$

%
&
a
aS

!

"
#

$

%
&

3

1+α h
H
!

"
#

$

%
&

'

(
)

*

+
,(sin 2JE sin 2d *sinθE )knode

S sin δnode
S  

 

−
MS

MM

!

"
#

$

%
&
a
aS

!

"
#

$

%
&

3
h
H
!

"
#

$

%
&α(2sin JM + sin 2JE )sin 2d *sinθEknode

M sin δnode
M  

 

−
MS

MM

"

#
$

%

&
'

2
a
aS

"

#
$

%

&
'

6
h
H
"

#
$

%

&
'α(2sin 2JE sin

2 θE ) knode
S sin δnode

S
(
)
*

+*
                                                  (E1) 
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dθE
dt

=
9GMM

2

16REh
RE
a

!

"
#

$

%
&
6 1
1+αβ
!

"
#

$

%
&  

 

⋅ −β +
h
H
#

$
%

&

'
(

)

*
+

,

-
.[+2sin2 JM + sin 2JE sin JM + (1 / 2)sin

2 2JE ]sin 2d knode
M sin δnode

M
/
0
1

 

 

+
MS

MM

!

"
#

$

%
&
a
aS

!

"
#

$

%
&

3

−β +
h
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!

"
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%
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,(+2sin JM + 2sin 2JE )sin 2JE sinθE knode

S sin δnode
S  
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MS

MM

!
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%
&
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!

"
#
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&

3
h
H
!

"
#

$

%
&[(−3 / 2)sin JM + (1 / 8)sin 2JE ]sin 2JE sin 2d * knode

M sin δnode
M  

 

+
MS

MM

!

"
#

$

%
&

2
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aS

!

"
#

$

%
&

6
h
H
!

"
#

$

%
&(sin2 2JE sinθE )knode

S sin δnode
S
'
(
)

*)
  ,                                                     (E2) 

 

where the period of the nodal tide is 2π/ &Ω . For the semidiurnal tide 

 

dJM
dt

= −
9GMS

2

32REH
RE
aS

!

"
#

$

%
&

6
α

1+αβ
!

"
#

$

%
&[+(1 / 2)sin2θE + sin

2 JE ]sin 2JE ksemi
S sin δsemi

S                (E3) 

 

and 

 

dθE
dt

= −
9GMS

2

32REH
RE
aS

"

#
$

%

&
'

6
1

1+αβ
!

"
#

$

%
&(+sin2 2JE )sinθEksemi

S sin δsemi
S                                        (E4) 

 

for which the period is half a year. 
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Tables 
 
 
Table 1. The B2m1njγ(JE, d) functions to zeroth and first order in the sines. 
 

m n j γ  
 
0 0 +0 1 +(1/8) (3 cos2 JE − 1) (1 + 3 cos 2d*)   0 
0 1 −1 1 +(1/4) sin 2JE (cos d + cos 2d*)   1 
0 1 +0 1 +(1/4) (3 cos2 JE − 1) sin 2d*    1 
 
1 0 −1 1 −(3/8) (cos JE + cos 2JE) sin 2d*   1 
1 0 +0 1 −(3/16) sin 2JE (1 + 3 cos 2d*)   1 
1 0 +0 2 +(3/16) sin 2JE (1 + 3 cos 2d*)   1 
1 0 +1 2 +(3/8) (cos JE + cos 2JE) sin 2d*   1 
1 1 −1 1 +(1/4) (cos JE + cos 2JE) (cos d* + cos 2d*)  0 
1 2 −2 1 −(1/64) (2 sin JE + sin 2JE) (3 + 4 cos d* + cos 2d*) 1 
1 2 −1 1 −(1/16) (cos JE + cos 2JE) (2 sin d + sin 2d)  1 
 
2 1 −2 1 +(1/8) (1 + cos JE)2 (2 sin d* + sin 2d*)  1 
2 1 −1 1 +(1/4) (2 sin JE + sin 2 JE) (cos d* + cos 2d*) 1 
2 2 −2 1 +(1/32) (1 + cos JE)2 (3 + 4 cos d* + cos 2d*) 0 
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Table 2. Constants in the Ross-Schubert model. 
 
 
Symbol Ross & Schubert Present paper 

 

k0  1.5   1.0 

µ0  9.7 × 1010 Pa  1.505 × 1011 Pa 

Ξ   1679 K   1679 K 

δ0  25   12.4663 

D  17937   17258.75 

χ  0.25   0.25 

τ0  −a   2000 

τ1  −a   565 

τ2  −a   0.2 

τ3  −a   81.319 

a0  10 RE   7.27 RE 

__________ 
a  No equation for τE was given. 
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Table B1. U functions for the Moon. 
 
 
f g 2

€ 

U fg
M1,ξ1  2

€ 

U fg
M1,ξ2  2

€ 

U fg
M1,ξ 3  

     
0 −1 +0 +0 +0 
0 +0 +0 +0 +0 
0 +1 +0 +0 +0 
1 −1 +(1 + cos d*) +(1 + cos d*) cos JE −(1 + cos d) sin JE 
1 +0 +0 −2 sin d* sin JE  −2 sin d* cos JE 
1 +1 +(1 − cos d*) −(1 − cos d*) cos JE +(1 − cos d*) sin JE 
     
  2

€ 

U fg
M 2,ξ1

 2

€ 

U fg
M 2,ξ2  2

€ 

U fg
M 2,ξ 3  

0 −1 +0 +0 +0 
0 +0 +0 +2 cos d* sin JM sin JE +2 cos d* sin JM cos JE 
0 +1 +2 sin d* sin JM +2 sin d* sin JM cos JE −2 sin d* sin JM sin JE 
1 −1 −(1+cos d*) cos JM +(1 + cos d*) cos JM cos JE −(1 + cos d*) cos JM sin JE 
1 +0 +0 −2 sin d* cos JM sin JE −2 sin d* cos JM cos JE 
1 +1 −(1 − cos d*) sin JM −(1 − cos d*) cos JM cos JE +(1 − cos d*) cos JM sin JE 
     
  2

€ 

U fg
M 3,ξ1

 2

€ 

U fg
M 3,ξ2  2

€ 

U fg
M 3,ξ 3  

0 −1 +0 +0 +0 
0 +0 +0 +2 cos d* cos JM sin JE +2 cos d* cos JM cos JE 
0 +1 +2 sin d* cos JM +2 sin d* cos JM cos JE −2 sin d* cos JM sin JE 
1 −1 +(1 + cos d*) sin JM −(1 + cos d*) sin JM cos JE +(1 + cos d*) sin JM sin JE 
1 +0 +0 +2 sin d* sin JM sin JE +2 sin d* sin JM cos JE 
1 +1 +(1 − cos d*) sin JM +(1 − cos d*) sin JM cos JE −(1 − cos d*) sin JM sin JE 
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Table B2. W functions for the Moon. 
 
 
f g 4

€ 

Wfg
M1,ξ1 4

€ 

Wfg
M1,ξ2  4

€ 

Wfg
M1,ξ 3  

     
0 +0 +0 +0 +0 
0 +1 +0 +0 +0 
0 +2 +0 +0  +0 
1 −2 −(1 + cos d*) +(1 + cos d*) cos JE −(1 + cos d*) sin JE 
1 −1 +0 −2 sin d* sin JE −2 sin d* cos JE 
1 +0 +2 cos d* +2 cos d* cos JE −2 cos d* sin JE  
1 +1 +0 −2 sin d* sin JE −2 sin d* cos JE 
1 +2 +(1 − cos d*) −(1 − cos d*) cos JE +(1 − cos d*) sin JE 
     
  4

€ 

Wfg
M 2,ξ1 4

€ 

Wfg
M 2,ξ2  4

€ 

Wfg
M 2,ξ 3  

0 +0 +2 sin d* sin JM +2 sin d* sin JM cos JE −2 sin d* sin JM sin JE 
0 +1 +0 +2 cos d* sin JM sin JE +4 cos d* sin JM cos JE 
0 +2 −2 sin d* sin JM +2 sin d* sin JM cos JE −2 sin d* sin JM sin JE 
1 −2 −(1+cos d*) cos JM +(1 + cos d*) cos JM cos JE −(1 + cos d*) cos JM sin JE 
1 −1 +0 −2 sin d* cos JM sin JE −2 sin d* cos JM cos JE 
1 +0 +2 cos d* cos JM +2 cos d* cos JM cos JE −2 cos d* cos JM sin JE 
1 +1 +0 −2 sin d* cos JM sin JE −2 sin d* cos JM cos JE 
1 +2 +(1−cos d*) cos JM −(1 − cos d*) cos JM cos JE +(1 − cos d*) cos JM sin JE 
     
  4

€ 

Wfg
M 3,ξ1 4

€ 

Wfg
M 3,ξ2  4

€ 

Wfg
M 3,ξ 3  

0 +0 +2 sin d* cos JM +2 sin d* cos JM cos JE −2 sin d* cos JM sin JE 
0 +1 +0 +2 cos d* cos JM sin JE +4 cos d* cos JM cos JE 
0 +2 −2 sin d* cos JM +2 sin d* cos JM cos JE −2 sin d* cos JM sin JE 
1 −2 +(1+cos d*) sin JM −(1 + cos d*) sin JM cos JE +(1 + cos d*) sin JM sin JE 
1 −1 +0 +2 sin d* sin JM sin JE +2 sin d* sin JM cos JE 
1 +0 −2 cos d* sin JM −2 cos d* sin JM cos JE +2 cos d* sin JM sin JE 
1 +1 +0 +2 sin d* sin JM sin JE +2 sin d* sin JM cos JE 
1 +2 −(1−cos d*) sin JM +(1 − cos d*) sin JM cos JE −(1 − cos d*) sin JM sin JE 
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Figures 
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Fig. 1.  The Laplace plane of the Moon. The x,y,z system is inertial with the plane of the 

ecliptic lying in the x-y plane. x, y, and z are unit vectors along the respective axes, with z 

= c, where c is the unit vector normal to the ecliptic. The Moon’s Laplace plane lies in the 

xLM-yLM plane with the zLM axis being normal to the Laplace plane. The zLM axis is tilted 

by an angle θM to the z axis. The Laplace plane intersects the x-y plane along the xLM axis, 

with the xLM axis making an angle φM with the x axis. The unit vector b is normal to the 

plane of the Moon’s orbit; the magnitude of the orbital angular momentum is h. The 

Moon’s orbit precesses around the zLM axis, with JM being the angle between the zLM axis 

and b. The intersection of the Moon’s orbital plane with the Laplace plane makes an 

angle ΩM with the xLM axis. Both φM and ΩM precess nearly uniformly in the negative 

sense. 
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Fig. 2.  The Laplace plane of the Earth. The x,y,z system is inertial with the plane of the 

ecliptic lying in the x-y plane. x, y, and z are unit vectors along the respective axes, with z 

= c, where c is the unit vector normal to the ecliptic. The Earth’s Laplace plane lies in the 

xLE-yLE plane with the zLE axis normal to the Laplace plane. The zLE axis is tilted by an 

angle θE to the z axis. The Laplace plane intersects the x-y plane along the xLE axis, with 

the xLE axis making an angle φE with the x axis. The unit vector s is along the Earth’s spin 

vector; the magnitude of the rotational angular momentum is H. The Earth precesses 

around the zLE axis, with JE being the angle between the zLE axis and s. The intersection of 

the Earth’s equatorial plane with the Laplace plane makes an angle ΩE with the xLE axis. 

Both φE and ΩE precess nearly uniformly in the negative sense. 
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Fig. 3.  The relationship between the Moon’s xµ, yµ, zµ system and the xLM, yLM, zLM 

system. The Moon is shown as the large black dot. The Moon’s orbit lies in the xµ-yµ 

plane. The unit vectors µ1, µ2, µ3 lie along the respective axis of the Moon’s xµ, yµ, zµ 

system. The unit vector b normal to the Moon’s orbital plane makes an angle JM with the 

zLM axis. The xµ axis makes an angle ΩM with the xLM axis. 
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Fig. 4.  The relationship between the Earth’s xξ, yξ, zξ system and the xLE, yLE, zLE system. 

The Earth is shown as the large black dot at the origin. The Earth’s equatorial plane lies 

in the xξ-yξ plane. The unit vectors ξ1, ξ2, ξ3 lie along the respective axis of the Earth’s 

xξ, yξ, zξ system. The unit vector s along the Earth’s spin axis makes an angle JE with the 

zLE axis. The xξ axis makes an angle ΩE with the xLE axis. 
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Fig. 5.  Love numbers and lag angles as a function of viscosity ηE for a viscous liquid for 

an angular frequency with a 4 hour period. The value of the sine of the lag angle δ20 is 

read off the right-hand scale, while the values of the Love number k2 and the product k2 

sin δ20 are both read off the left-hand scale. 
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Fig. 6.  Love number and lag angles in the Ross-Schubert model as a function of time. 

The sine of the lag angle δ20 is read off the right-hand scale, while the value of the Love 

number k2 is read off the left-hand scale. The initial Love number is 0.85. 
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Fig. 7.  The Earth’s length-of-day (LOD) as a function of the Moon’s distance from the 

center of the Earth. The distance is in terms of Earth radii, where RE is the Earth’s radius. 

The usual LOD found from the small lag angle approximation is the curve labeled 

“Canonical”, while the Ross-Schubert model with parameters listed on the right side of 

Table 2 are shown as black dots every 5 RE. 
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Fig. 8.  Angles for the Moon as a function of the Moon’s distance from the center of the 

Earth. The inclination of the Moon’s orbit I to the ecliptic for the small lag angle 

approximation is shown as the black curve. The inclination oscillates between the upper 

and lower branches of the curve. The “bounce” in the lower branch between 7 RE and 17 

RE is due to I always being taken to be positive. The oscillations become small for 

distances >~ 30 RE. The angle JM for the Ross-Schubert model using the parameters 

adopted here are shown as dots every 5RE, while the angle θM is shown as ×’s. 
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Fig. 9.  Angles for the Earth as a function of the Moon’s distance from the center of the 

Earth. The Earth’s obliquity ε for the small lag angle approximation is shown as the black 

curve. The obliquity oscillates between the upper and lower branches of the curve. The 

oscillations become small for distances >~ 30 RE, so that θE ≈ ε. The angle θE for the 

Ross-Schubert model using the parameters adopted here are shown as dots every 5RE, 

while the angle JE is shown as ×’s. 
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Fig. 10.  Envelope for θE for parameterized ocean tide models as a function of the 

Moon’s distance from the center of the Earth. θE is essentially obliquity ε for Earth-Moon 

distances > 30 RE. The dotted line gives θE for Δ12 =(k10 sin δ10/k20 sin δ20) = (k11 sin δ11/ 

k20 sin δ20) = 1. The lower curve is for Δ12 = 0. The upper curve is for Δ12   = 2. The gray 

region in between is for 0 ≤ Δ12 ≤ 2. Note that for the upper curve θE reaches a peak 

around 50 RE and then decreases as the Earth-Moon distance increases. 

 

 

 


