EUV and X-ray Optics: Synergy between Laboratory and Space (SPIE 9510)
2015 April 13-14; Prague (Czech Republic)

X-ray optics at NASA Marshall Space Flight Center

Steve O’Dell
NASA Marshall Space Flight Center
on behalf of the MSFC X-ray Astronomy Group
NASA Marshall Space Flight Center
X-ray Astronomy Group

Steve O’Dell a, Carolyn Atkins b, David Broadway a, Ron Elsner a, Jessica Gaskin a, Mikhail Gubarev a, Kiran Kilaru c, Jeff Kolodziejczak a, Brian Ramsey a, Jackie Roche a, Doug Swartz c, Allyn Tennant a, Martin Weisskopf a, Vyacheslav Zavlin c

a NASA Marshall Space Flight Center (USA)
b University of Alabama in Huntsville (USA)
c Oak Ridge Associated Universities, Marshall Space Flight Center (USA)
NASA Marshall Space Flight Center
X-ray Astronomy Group

Steve O’Della, Carolyn Atkinsb, David Broadwaya, Ron Elsnera, Jessica Gaskina, Mikhail Gubareva, Kiran Kilaruc, Jeff Kolodziejczaka, Brian Ramseya, Jackie Rochea, Doug Swartzc, Allyn Tennanta, Martin Weisskopfa, Vyacheslav Zavlinc

a NASA Marshall Space Flight Center (USA)
b University of Alabama in Huntsville (USA)
c Oak Ridge Associated Universities, Marshall Space Flight Center (USA)

Papers at Conference 9510: \#1 (Martin Weisskopf), \#2 (Steve O’Dell), \& \#28 (David Broadway)
Outline

- Electroformed-nickel replication (ENR)
- Production of ENR x-ray optics
- Research toward high-resolution x-ray optics
Outline

- Electroformed-nickel replication (ENR)
- Production of ENR x-ray optics
- Research toward high-resolution x-ray optics
Electroformed Nickel Replication: Mandrel preparation

CNC machine the aluminum blank to (slightly undersized) near-net-shape mandrel.

Chemically clean, activate, and deposit electroless nickel onto the machined aluminum mandrel.

Diamond turn electroless nickel to figure precisely the mandrel to its prescription.

Lap and polish the mandrel to make final figure corrections, smooth, and superpolish surface.

Perform in-process and final metrology to ensure that the mandrel satisfies precision requirements for surface figure and finish.
Ultrasonically clean and chemically passivate the electroless-nickel surface of the precision mandrel.

Electroform nickel or nickel-alloy shell onto the mandrel, with minimal uniform plating stress.

Separate the shell from the mandrel in a cold-water bath; clean mandrel for additional replications.

MSFC advances in controlling adhesion, plating stress, and alloy strength have enabled replication of very thin (~100-μm) shells.
Outline

- Electroformed-nickel replication (ENR)
- Production of ENR x-ray optics
- Research toward high-resolution x-ray optics
High-Energy Replicated Optics to Explore the Sun (HEROES)

- High-energy x-ray telescope array for MSFC & GSFC balloon payload
 - Update to MSFC HERO
 - First focused image (2001)
 - Launched 2013
 - Heliophysics/Astrophysics
- 8 flight mirror modules
 - 6000-mm focal length
 - 14 shells per module
 - 610-mm long (P+S)
 - 50:94-mm diameters
 - Iridium optical coating
 - 25” half-energy width
Focusing Optics X-ray Solar Imager (FOXSI)

- Medium-energy x-ray telescope array for UC Berkeley’s rocket payload
 - Launched 2012 (FOXSI-1)
 - Launched 2014 (FOXSI-2)
 - Study solar nanoflares
- 7 flight mirror modules
 - 2000-mm focal length
 - 7\times10 shells per module
 - 600-mm long (P+S)
 - 76\times63:103-mm diameters
 - Iridium optical coating
 - 5” full width half max
Micro-X

- Low-energy x-ray telescope for MIT’s rocket payload
 - To be launched in 2017
 - High-spectral-resolution micro-calorimeter images of supernova remnants
- 1 flight mirror module
 - 2500-mm focal length
 - 5 shells per module
 - 600-mm long (P+S)
 - 383:444-mm diameter
 - Rhodium optical coating
 - <30” half-energy width
Astronomical Röntgen Telescope (ART) on Spectrum-Röntgen-Gamma (SRG)

- Medium-energy x-ray telescope array onboard Russian SRG satellite
 - To be launched in 2016
 - Complements German low-energy eROSITA
- 7 flight mirror modules
 - 2700-mm focal length
 - 28 shells per module
 - 580-mm long (P+S)
 - 50:150-mm diameters
 - Iridium optical coating
 - 25” half-energy width
Medical applications: Small-animal radionuclide imaging

- Funded by US National Institutes of Health (NIH)
 - NASA MSFC
 - Lawrence Livermore
 - Harvard–Smithsonian Center for Astrophysics
 - UC San Francisco

- X-ray microscope
 - Nested hyperboloid–ellipsoid geometry
 - 4X magnification
 - 600-mm object distance
 - 2400-mm image distance
 - 100-μm resolution

2015.04.13
SPIE 9510-2: X-ray optics at NASA Marshall Space Flight Center
Cold-neutron imaging: Demonstration neutron microscope

- Collaboration
 - NASA MSFC
 - Oak Ridge National Lab
 - MIT

- Cold-neutron microscope
 - Pure nickel for neutron reflectance ($K_n \approx 1$ meV)
 - Otherwise identical to the x-ray microscope

- Advantages over non-focusing methods
 - 70-μm resolution (FWHM)
 - 50–100 times intensity
Cold-neutron imaging: Development for NIST beamline

- Funded by US National Institute of Standards and Technology (NIST)
- Multi-step demonstration
 - High-resolution optics
 - 1X magnification imaging
 - Large-magnification imaging
- Applications
 - Fuel-cell development
 - Lithium-air batteries
 - Metallurgy and Chemistry
 - Medicine and Biology

Characterize water accumulation in fuel cell by differencing images before/after operation.
Outline

- Electroformed-nickel replication (ENR)
- Production of ENR x-ray optics
- Research toward high-resolution x-ray optics
Differential deposition allows static correction of figure errors.

- MSFC is applying this technology.
 - Simulations show potential capability.
 - Initial tests are promising.
 - Need to control coating stress and deformation.
 - See David Broadway’s talk.

![Graphs showing desired profiles before and after correction](image1.png)

2015.04.13
SPIE 9510-2: X-ray optics at NASA Marshall Space Flight Center
Demonstrated rapid correction of mid-to-upper-mid frequency errors
Direct fabrication of thin-walled full-shell grazing-incidence optics

Research in direct fabrication of thin-walled full-cylinder grazing-incidence optics utilizes a free-form robotic polisher.

Precision measurements with metrology instruments—including a Coordinate Measuring Machine—are essential during fabrication.