Cryogenic Selective Surfaces—How Cold Can We Go?
Robert C. Youngquist and Mark A. Nurge, Kennedy Space Center, NASA

The Concept

- **The Payload Bay doors of the Space Shuttle**
 - Temperatures with a realizable selective surface?
 - World materials are not ideal. The key question is, Can we reach cryogenic temperatures?
 - Hibbard (1961) showed we could reach 40 K with ideal materials. But real-world materials are not ideal. The key question is, Can we reach cryogenic temperatures with a realizable selective surface?

First Try - Second Surface Mirrors

- A common selective surface is a second surface mirror, where a material that is transparent in the visible, but dark in the far-IR, is placed onto a mirror.
 - We modeled materials such as sapphire, CaF2, and MgF2 on silver.

Second Try - Dielectric Mirrors

- Dielectric mirrors are multi-layer reflectors that have achieved better than 99% reflectivity over bands as long as 300-1100 nm. If we could extend this they might yield the solar reflectance needed to reach cryogenic temperatures.

Third Try - Diffuse Scatterers - Solar White

- A possible cryogenic selective surface is composed of diffuse particles of a material like MgF2 or BaF2. Such a surface would appear white to most of the solar spectrum, i.e. “Solar White”.

Failure

- **Expected Temperature**
 - Temperatures too high due to blue/UV absorption by silver.

Likely Failure

- **Expected Temperature**
 - Might succeed under substantial funding, but high risk of failure.

Possible Success

- **Expected Temperature**
 - A selective surface that reaches cryogenic temperatures!
 - Now we can move on to applications.