Introduction and Objective

- Program used to simulate atmospheric flight trajectories of entry capsules [1]
- Includes models of atmospheres of different planetary destinations – Earth, Mars, Venus, Jupiter, Saturn, Uranus, Titan, ...
- Solves 3-degrees of freedom (3DoF) equations for a single body treated as a point mass
- Also supports 6-DoF trajectory simulation and Monte Carlo analyses
- Uses Fehlberg-Runge-Kutta (4th-5th order) time integration with automatic step size control
- Includes rotating spherical planet with gravitational field having a J2 harmonic
- Includes a variety of engineering aerodynamic and heat flux models
- Capable of specifying events – heatshield jettison, parachute deployment, etc. – at predefined altitudes or Mach numbers
- Has material thermal response models of typical aerospace materials integrated

Modifications Made to Traj for Meteor Simulation

- NASA’s Galileo probe to Jupiter only one that experienced significant mass loss
- Entry capsule was a 45° sphere-cone with fully-dense carbon phenolic as heatshield material
- M. Tauber et al. [2] developed JAE code for simulation of Galileo probe (Jupiter entry)
- JAE logic incorporated into Traj
 - Sphere-cone shape replaced by sphere
 - Mass loss equation of meteor physics used
 - Allow input specification of heat of ablation, Q
 - Allow heat transfer coefficient to vary in time
 - Time-varying heat transfer coefficients from detailed flow computations curve fit as a function of altitude, velocity, and size

Traj Features:

- **Test Case: Chelyabinsk [3]**
 - Basic Assumptions:
 - Hyperbolic excess velocity: 15.0 km/s
 - Altitude at entry: 95.0 km
 - Relative velocity at entry: 19.0 km/s
 - Relative entry angle: -18.5 deg
 - Relative heading angle: -76.6 deg
 - Geographic latitude at entry: 54.5 deg
 - Oblate rotating Earth
 - Gravitational model includes J2 term
 - US-1976 atmospheric model
 - Meteoroid Assumptions:
 - Shape: Sphere
 - Density of meteoric material: 3300 kg/m³
 - Aerodynamic model: Sphere
 - Sensitivity study to entry mass, heat transfer coefficient, heat of ablation, and fragmentation

Test Case: Chelyabinsk [3]

- Heat Transfer Coefficient, C_H, Model
 - $C_H(z) = \left[a + b(\frac{z}{J})^c \right] \exp\left(\frac{z - C}{J} \right)$
 - Curve fit expressions are to be used for $z > 15.5 \text{ km}$
 - C_H for different velocities and diameters obtained through linear interpolation

- **Basic Plots for Variable C_H and Double Fragmentation (Case 2_D)**
 - For Case 2_D simulation fragmentation at 40 & 30 km altitudes assumed to occur instantly
 - Fragment masses tuned to overlay simulated trajectory on Chelyabinsk observations.
 - On a scale of 40 to 90 km altitude, mass vs altitude trace appears to be a straight line over the entire mass range
 - Trace is actually parabolic when mass scale is expanded
 - Influence of C_H model is insignificant if large changes occur in meteor mass due to fragmentation

Conclusions, Future Work and References

- **TRAJ**, an established trajectory simulation tool successfully modified for meteor entries
- Improvements include:
 - Simple mass loss equation of meteor physics
 - Time-varying heat transfer coefficient based on detailed flow computations
 - Ability to specify fragmentation events
 - Updated version of Traj tested against Chelyabinsk observations
- **TRAJ** can now be used to establish sensitivity of trajectories to various meteor parameters
- Leaves open the issue of verification/validation of Traj and additional test cases are needed
- Could tektites [4] be used as additional test cases?
- Advantages of simulating tektite entries into Earth’s atmosphere
 - Exo-atmospheric shapes are definitely spherical
 - Small sizes and (sub)orbital entry velocities
 - Problem is dominated by convective heating and melting
 - Melted shapes are aerodynamically stable
 - Chemical composition of australite tektites is statistically well defined
 - Serve as a good foundation for the tougher meteor entry problem

References