Late-glacial to late-Holocene shifts in global precipitation $\delta^{18}O$

1Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, USA
2Department of Geography, University of Calgary, Calgary, Alberta, Canada
3Department of Geosciences, Pacific Lutheran University, Tacoma, USA
4Department of Meteorology and Bolin Center for Climate Research, Stockholm University, Stockholm, Sweden
5Department of Civil Engineering, University of Victoria, Victoria, Canada
6Australian Nuclear Science and Technology Organisation, Sydney, Australia
7NASA Goddard Institute for Space Studies, New York, USA
8Laboratoire de Météorologie Dynamique, IPSL, UPMC, CNRS, Paris, France
9Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, USA
10Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
11Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan

Correspondence to: S. Jasechko (sjasechk@ucalgary.ca)

Received: 28 February 2015 – Published in Clim. Past Discuss.: 27 March 2015
Revised: 22 September 2015 – Accepted: 5 October 2015 – Published: 14 October 2015

Abstract. Reconstructions of Quaternary climate are often based on the isotopic content of paleo-precipitation preserved in proxy records. While many paleo-precipitation isotope records are available, few studies have synthesized these dispersed records to explore spatial patterns of late-glacial precipitation $\delta^{18}O$. Here we present a synthesis of 86 globally distributed groundwater $(n = 59)$, cave calcite $(n = 15)$ and ice core $(n = 12)$ isotope records spanning the late-glacial (defined as 50,000 to 20,000 years ago) to the late-Holocene (within the past 5,000 years). We show that precipitation $\delta^{18}O$ changes from the late-glacial to the late-Holocene range from $-7.1 \%e$ ($\delta^{18}O_{\text{late-Holocene}} > \delta^{18}O_{\text{late-glacial}}$) to $+1.7 \%e$ ($\delta^{18}O_{\text{late-glacial}} > \delta^{18}O_{\text{late-Holocene}}$), with the majority (77%) of records having lower late-glacial $\delta^{18}O$ than late-Holocene $\delta^{18}O$ values. High-magnitude, negative precipitation $\delta^{18}O$ shifts are common at high latitudes, high altitudes and continental interiors ($\delta^{18}O_{\text{late-Holocene}} > \delta^{18}O_{\text{late-glacial}}$ by more than 3%). Conversely, low-magnitude, positive precipitation $\delta^{18}O$ shifts are concentrated along tropical and subtropical coasts ($\delta^{18}O_{\text{late-glacial}} > \delta^{18}O_{\text{late-Holocene}}$ by less than 2%). Broad, global patterns of late-glacial to late-Holocene precipitation $\delta^{18}O$ shifts suggest that stronger-than-modern isotopic distillation of air masses prevailed during the late-glacial, likely impacted by larger global temperature differences between the tropics and the poles. Further, to test how well general circulation models reproduce global precipitation $\delta^{18}O$ shifts, we compiled simulated precipitation $\delta^{18}O$ shifts from five isotope-enabled general circulation models simulated under recent and last glacial maximum climate states. Climate simulations generally show better inter-model and model-measurement agreement in temperate regions than in the tropics, highlighting a need for further research to better understand how inter-model spread in convective rainout, seawater $\delta^{18}O$ and glacial topography parameterizations impact simulated precipitation $\delta^{18}O$. Future research on paleo-precipitation $\delta^{18}O$ records can use the global maps of measured and simulated late-glacial precipitation isotope compositions to target and prioritize field sites.

1 Introduction

Isotopic compositions of late-glacial precipitation can be preserved in groundwaters, cave calcite, glacial ice, ground ice and lake sediments. These records have been used to better understand past climate changes for more than a half century (e.g., Münnich, 1957; Thatcher et al., 1961; Münnich et
Late-glacial to late-Holocene precipitation δ18O shifts (n = 59) as the combined total of speleothem and ice core records (n = 27; where δ18O = (δ18O / δ18O_{sample}) / (δ18O / δ18O_{standard mean ocean water} - 1) × 1000). A recent global synthesis of paired precipitation-groundwater isotopic data demonstrated that modern annual precipitation and modern groundwater isotopes reflect systematic relationships between biogeography, moisture recycling, and in-cloud processes (Ciais and Jouzel, 1994; Masson-Delmotte et al., 1995; Sjostrom and Welker, 1994; Rozanski, 1985; Nikolayev and Mikhalev, 1995; Plummer, 1993), large-scale atmospheric circulation (e.g., Rozanski, 1985; Weyhenmeyer et al., 2000; Jasechko et al., 2014), and changes to seawater δ18O (Emiliani, 1955; Dansgaard and Tauber, 1969; Schrag et al., 1996, 2002). Atmospheric temperatures have increased by a global average of ∼ 4 °C since the last glacial maximum, with greatest warming at the poles and more modest warming at lower latitudes (Fig. 1: Shakun and Carlson, 2010; Annan and Hargreaves, 2013), and changes to seawater δ18O during the last glacial maximum was 1.0 ± 0.1‰ higher than the modern ocean, as constrained by paleo-ocean water samples collected from pore waters trapped within sea floor sediments (Schrag et al., 2002).

Previous studies have proposed many different interpretations of past changes to precipitation isotopic compositions. Records of paleo-precipitation δ18O have been used as a proxy for regional land surface and atmospheric temperature (e.g., Rozanski, 1985; Nikolayev and Mikalev, 1995; Johnsen et al., 2001; Grashby and Chen, 2005; Akouvi et al., 2008; Bakari et al., 2012); however, δ18O-based paleo-temperatures can be complicated by past changes to a variety of other processes controlling precipitation δ18O, including moisture sources, upward rainout, transport pathways, moisture recycling and in-cloud processes (Ciais and Jouzel, 1994; Masson-Delmotte et al., 2005; Sjostrom and Welker, 2009), Process-based explanations for observed meteoric water δ18O variations in proxy records include changes to hurricane intensity (e.g., Plummer, 1993), large-scale atmospheric circulation (e.g., Rozanski, 1985; Weyhenmeyer et al., 2000; McDermott et al., 2001; Pausata et al., 2009; Asmerom et al., 2010; Oster et al., 2015), aridity (e.g., Wagner et al., 2010), and the monsoon strength (e.g., Denniston et al., 2000; Lachniet et al., 1967; Pearson and White, 1967; Tamers, 1967; Gat et al., 1969). Each type of isotopic proxy record is distinguished by its temporal resolution, preservation of one or both δ18O / δ16O and δ2H / δ1H ratios, and frequency on land surface. For example, groundwater records contain both δ18O / δ16O and δ2H / δ1H ratios with widespread global occurrence, but have a coarser temporal resolution than other paleoclimate proxies (Rozanski, 1985; Edmunds and Milne, 2001; Edmunds, 2009; Corcho Alvarado et al., 2011; Jiráková et al., 2011). Speleothem records, by contrast, have high temporal resolution but usually only report calcite δ18O / δ16O ratios (without fluid inclusion δ2H / δ1H data) and are less common than groundwater records (e.g., Harmon et al., 1978, 1979). Late-glacial ice core and ground ice records have high temporal resolution, can be analysed for δ18O / δ16O and δ2H / δ1H ratios, but are rare on non-polar lands (Dansgaard et al., 1982; Thompson et al., 1989, 1995, 1997, 1998). Lake sediment records can have a high temporal resolution, can preserve δ18O / δ16O and δ2H / δ1H ratios and are available for a multitude of globally distributed locations (e.g., Edwards and McAndrews, 1989; Eawag et al., 1992; Menking et al., 1997; Wolfe et al., 2000; Anderson et al., 2001; Beuning et al., 2002; Sachse et al., 2004; Morley et al., 2005; Tierney et al., 2008). However, some lake water proxy isotope records may be impacted by paleo-lake evaporative isotope effects that obscure the primary meteoric water signal and mask paleo-precipitation isotope compositions (e.g., lake sediment calcite, diatom silica; Leng and Marshall, 2004).
The objective of this study is to analyse spatial patterns of measured late-glacial to late-Holocene precipitation δ18O changes from published groundwater, ground ice, glacial ice and cave calcite records, and to compare these measurements with output from five state-of-the-art isotope-enabled general circulation model simulations of last glacial maximum and pre-industrial or modern climate conditions. Synthesizing paleowater δ18O records provides an important constraint for isotope-enabled general circulation model simulations of atmospheric and hydrologic conditions during glacial climate states (Jouzel et al., 2000). We combine a new global compilation of late-glacial groundwater and ground ice isotope data (n = 59) with existing compilations for speleothems (n = 15; Shah et al., 2013) and ice cores (n = 12; Pedro et al., 2011; Stenni et al., 2011; Clark et al., 2012; Caley et al., 2014a). This compilation of late-glacial groundwater isotope compositions builds from earlier reviews of European and African paleowater isotope compositions (Rozanski, 1985; Edmunds and Milne, 2001; Darling, 2004; Edmunds, 2009; Négrel and Petelet-Giraud, 2011; Jiráková et al., 2011).

2 Data set and methods

In order to examine spatial patterns of change to meteoric water δ18O values we compiled δ18O, δ2H, δ13C and 14C data from 1713 groundwater samples collected from 59 aquifer systems reported in 76 publications (data and primary references presented in the Supplement). δ13C, δ2H and 14C data were used to estimate groundwater age (details within Supplement). Changes to precipitation δ18O values over time were determined by comparing groundwater isotope compositions of the late-Holocene (δ18Olate-Holocene defined here as less than 5000 years before present; Thompson et al., 2016) and the latter half of the last glacial time period (δ18Olake-glacial: 20 000 to ~50 000 years before present). We acknowledge that these two relatively long time intervals – necessarily long in order to examine groundwater isotope records – integrate precipitation δ18O variability over the course of each time interval. The late-Holocene time interval integrates known precipitation δ18O variability (e.g., Aichner et al., 2015), and the late-glacial time interval likely incorporates groundwater preceding the last glacial maximum, potentially during Marine Isotope Stage 3 or even older glacial time periods due to large uncertainties in 14C-based groundwater ages (Supplement).

Proxy-based meteoric water δ18O changes from the latter half of the last glacial time period to the late-Holocene are described herein as measured Δ18Olate-glacial, where measured Δ18Olate-glacial = δ18Olate-glacial − δ18Olate-Holocene. A minimum groundwater age of 20 000 years before present used to define the late-glacial to remain consistent with the timing of the last glacial maximum (~20 000 years before present; Clark et al., 2009). Samples having a deuterium excess of less than zero (deuterium excess = δ2H − 8 × δ18O;Dansgaard, 1964) and falling along regionally characteristic evaporation δ2H/δ18O slopes (Gibson et
al., 2008) were removed from the analysis to avoid including groundwater samples impacted by partial evaporation. Further, studies reporting saltwater intrusion were avoided on the basis of groundwater δ¹⁸O and salinities showing evidence of seawater mixing (e.g., Schiavo et al., 2009; Yecibi et al., 2009; Hamouda et al., 2011; Han et al., 2011; Wang and Jiao, 2012; Currell et al., 2013). The 59 compiled groundwater measured δ¹⁸O values are unevenly distributed among western Europe (n = 10), eastern Europe and the Middle-East (n = 12), Africa (n = 17), southeastern Asia (n = 6), Australia, Oceania and the Malay Archipelago (n = 2), South America (n = 2), temperate and subtropical North America (n = 8) and the High Arctic (n = 2). Half of the compiled groundwater records are located in the tropics or subtropics (that is, within 35° of the equator; n = 29) and half are located in the extra-tropics (n = 30).

Speleothem and ice core isotope proxy records were also compiled. Lacustrine sediment δ¹⁸O records are not considered in this study because these records may preserve meteoric waters impacted by evaporative isotope effects (Leng and Marshall, 2004). Speleothem and ice core measured δ¹⁸O values were calculated by subtracting average δ¹⁸O values for each of the two time intervals defined for the groundwater records: the late-Holocene (< 5000 years before present) and latter half of the last glacial time period (20 000 to 50 000 years before present). This step effectively lowered the temporal resolution of speleothem and ice core precipitation isotope records to be consistent with the temporal resolution of the groundwater records. A correction factor was applied to speleothem δ¹⁸O values to account for different H₂O-CaCO₃ isotopic fractionation factors during the late-glacial and the late-Holocene because of differing land surface temperatures during each time period (details presented within Supplement).

Simulated δ¹⁸O values were compiled from five isotope-enabled general circulation models (simulated δ¹⁸O = δ¹⁸Olast glacial maximum − δ¹⁸Opre-industrial): CAM3iso (e.g., Noone and Sturm, 2010; Pausata et al., 2011a), ECHAM5-wiso (e.g., Werner et al., 2011), GISSE2-R (e.g., Schmidt et al., 2014; LeGrande and Schmidt, 2008, 2009), IsoGSM (e.g., Yoshimura et al., 2003) and LMDZ4 (e.g., Risi et al., 2010a). ECHAM5-wiso and IsoGSM outputs are for modern climate rather than pre-industrial conditions; however, the difference between the isotopic composition of pre-industrial and modern climate are expectedly small compared to late-glacial to late-Holocene δ¹⁸O shifts. An offset factor was applied to simulated mean seawater δ¹⁸O in all five models (Table S1 in the Supplement) to account for known glacial-interglacial changes to seawater δ¹⁸O (Emiliani, 1955; Dansgaard and Tauber, 1969; Schrag et al., 1996, 2002). Possible spatial differences in seawater δ¹⁸O changes from the last glacial maximum to the pre-industrial time period are not incorporated into simulations with prescribed sea surface temperatures (CAM3iso, ECHAM5-wiso, IsoGSM, LMDZ4) but are simulated by the coupled ocean-atmosphere simulation of GISSE2-R (Table S1). GISSE2-R was submitted to the CMIP5 archive and participated in PMIP3. LMDZ4 was submitted to the CMIP3 archive. ECHAM5 and CAM3iso did not participate in CMIP5, while IsoGSM uses different boundary conditions than proposed for CMIP5 (Yoshimura et al., 2008). The five models span a range of spatio-temporal resolutions and isotopic/atmospheric parameterizations described in detail in the above references. A selection of the inter-model similarities and differences are summarized in Table S1.

For clarity, empirical δ¹⁸Olate-glacial values that are based on measured isotope contents of groundwater, speleothem, ground ice or ice core records are referred to herein as measured δ¹⁸Olate-glacial; simulated precipitation isotope compositions obtained from general circulation model results are referred to as simulated δ¹⁸Olate-glacial. We acknowledge that the general circulation models explicitly analyse the last glacial maximum and the pre-industrial climate conditions (i.e., simulated δ¹⁸Olate-glacial = δ¹⁸Olast glacial maximum − δ¹⁸Opre-industrial), whereas proxy record reconstructions of δ¹⁸Olate-glacial integrate hydroclimatology over multi-millennial timescales that are different from the model simulations.

3 Results and discussion

3.1 Measured δ¹⁸Olate-glacial Values

Measured groundwater (n = 59), speleothem (n = 15) and ice core (n = 12) δ¹⁸Olate-glacial values are presented in Fig. 2 (references presented in the Supplement). Measured δ¹⁸Olate-glacial values range from −7.1‰ (i.e., δ¹⁸Olate-glacial < δ¹⁸Olate-Holocene) to +1.7‰ (i.e., δ¹⁸Olate-glacial > δ¹⁸Olate-Holocene). Three-quarters of the compiled records have negative measured δ¹⁸Olate-glacial values and one-quarter of compiled records have positive measured δ¹⁸Olate-glacial values. Most groundwater-based late-glacial to late-Holocene shifts fall along δ²H/δ¹⁸O slopes of ~8 (Fig. S58 in the Supplement), suggesting that most groundwaters record temporal shifts to precipitation isotope contents rather than to soil evaporation isotope effects (see Evaristo et al., 2015). More than 80 % of records with positive measured δ¹⁸Olate-glacial values are located within 35° of the equator and within 400 km of the nearest coastline (e.g., Bangladesh δ¹⁸Olate-glacial of +1.5‰, less than 300 km from the coast; Figs. 2–4). In comparison, negative measured δ¹⁸Olate-glacial values are found in both coastal regions and farther inland. Negative measured δ¹⁸Olate-glacial values of the greatest magnitude are located at high latitudes (e.g., northwestern Canada, latitude 64°N: δ¹⁸Olate-glacial of −5.5‰; northern Russia latitude 72°N: −5.4‰) and far from coastlines (e.g., Hungary: −3.7‰; ~500 km from Atlantic Ocean; Peru: −6.3‰, ~2000 km from Atlantic Ocean, the modern moisture source to Peru; Garreau et al., 2009). Greenland and Antarctic ice cores...
have negative measured $\Delta^{18}O_{\text{late-glacial}}$ values that are of greater magnitude than non-polar measured $\Delta^{18}O_{\text{late-glacial}}$ values (Antarctic and Greenland $\Delta^{18}O_{\text{late-glacial}}$ values range from -3.6 to $-7.1\%e$; Fig. 3).

Our synthesis shows that measured $\Delta^{18}O_{\text{late-glacial}}$ values in the tropics are closer to $0\%e$ (i.e., no change) than $\Delta^{18}O_{\text{late-glacial}}$ values at high latitudes and continental interiors that generally have high magnitude, negative $\Delta^{18}O_{\text{late-glacial}}$ values. High magnitude, negative measured $\Delta^{18}O_{\text{late-glacial}}$ values are most common where present-day precipitation $\delta^{18}O$ values are at a minimum (e.g., Bowen and Wilkinson, 2002). This broad spatial pattern is consistent with the non-linear isotopic distillation of air masses undergoing progressive rainout (i.e., Rayleigh distillation). Because seawater $\delta^{18}O$ values were $\sim 1\%e$ higher-than-modern during the last glacial maximum (Schrag et al., 1996, 2002), our finding that the majority of measured $\Delta^{18}O_{\text{late-glacial}}$ values are negative suggests that isotopic distillation of air masses was greater during the late-glacial than under present climate. This finding is consistent with land surface temperature reconstructions that show larger glacial-to-modern changes to land temperatures at high latitude and continental settings (Fig. 1; Annan and Hargreaves, 2013). Tropical versus extratropical patterns of late-glacial/late-Holocene temperature change (Fig. 1a) are broadly similar to measured $\Delta^{18}O_{\text{late-glacial}}$ values (Fig. 3), where both temperature and isotope shifts are greater at high latitudes relative to the equator. Therefore, it is possible that the larger late-glacial to late-Holocene temperature shifts at the poles relative to the equator may have served to amplify the non-linear, Rayleigh relationship describing the heavy isotope depletion of air masses undergoing progressive rainout during transport from lower to higher latitudes. Further, the late-glacial was characterized by (i) lower-than-modern atmospheric temperatures with larger coastal-inland gradients, and (ii) lower-than-modern eustatic sea level leading to longer overland atmospheric transport distances. Each of these late-glacial/late-Holocene changes favours stronger-than-modern isotopic distillation of air masses transported inland from the coast during the late-glacial (Dansgaard, 1964; Rozanski, 1993; Winnick et al., 2014), potentially contributing to the broad, global observation that most (77%) $\delta^{18}O_{\text{late-Holocene}}$ values exceed $\delta^{18}O_{\text{late-glacial}}$ values on continents.

Pairings of groundwater and speleothem records are available within ~ 500 km of one another in the southwestern USA, central China and Israel. Southwestern USA speleothem and groundwater records ~ 400 km apart show similar $\Delta^{18}O_{\text{late-glacial}}$ values, with San Juan Basin groundwaters having a measured $\Delta^{18}O_{\text{late-glacial}}$ value of $-2.5 \pm 1.0\%e$ (Phillips et al., 1986) and speleothems ~ 400 km to the south having measured $\Delta^{18}O_{\text{late-glacial}}$ values of -3.0 ± 1.2 and -3.4 ± 0.4 (Asmerom et al.,...
2010; Wagner et al., 2010). Central China speleothem and groundwater records ~200 km apart overlap within uncertainty margins (i.e., \(\Delta^{18}O_{\text{late-glacial}} \) values of \(-1.1 \pm 1.7 \) and \(+0.3 \pm 2.1\) ‰; Cai et al., 2010). Israeli speleothem and groundwater records ~100 km apart have different measured \(\Delta^{18}O_{\text{late-glacial}} \) values. Two Israeli groundwater \(\Delta^{18}O_{\text{late-glacial}} \) records were compiled; the coastal Israeli aquifer has a \(\Delta^{18}O_{\text{late-glacial}} \) value of \(+0.3 \pm 0.4\) ‰ (Yechieli et al., 2009), whereas groundwater of the Dead Sea Rift Valley has a \(\Delta^{18}O_{\text{late-glacial}} \) value of \(-1.8 \pm 0.6\) ‰ (Burg et al., 2013). Speleothem records have \(\Delta^{18}O_{\text{late-glacial}} \) values close to \(+1\) ‰ (Frumkin et al., 1999; Bar-Matthews et al., 2003). In northern Turkey, speleothem and groundwater separated by ~150 km have measured \(\Delta^{18}O_{\text{late-glacial}} \) values that differ by ~3 ‰ (speleothem \(\Delta^{18}O_{\text{late-glacial}} \) –5.7 ± 0.4 ‰ versus groundwater \(\Delta^{18}O_{\text{late-glacial}} \) of −2.8 ± 1.0 ‰; Fleitmann et al., 2009; Arslan et al., 2013, 2015). While the locations of the groundwater and speleothem records differ, the compiled data suggest that groundwater and speleothem \(\Delta^{18}O_{\text{late-glacial}} \) values may capture different \(\Delta^{18}O_{\text{late-glacial}} \) values under similar climatic conditions.

A number of potential processes could bias the preservation of precipitation isotope composition in ice core, speleothem or groundwater archives (Wang et al., 2001; Thompson et al., 2006; Edmunds, 2009). For example, groundwater and speleothem archives preserve only the isotope record of precipitation that traverses the vadose zone. Recent global analyses of paired precipitation-groundwater isotope compositions show that winter (extratropics) and wet season (tropics) precipitation contributes disproportionately to recharge (Jasechko et al., 2014), meaning that paleoclimate records may be more sensitive to changes in winter and wet seasons than summer or dry season (Vogel et al., 1963; Simpson et al., 1972; Grabczak et al., 1984; Harrington et al., 2002; Jones et al., 2000; Darling, 2004; Partin et al., 2012). Similarly, groundwater isotope records are unlikely to represent constant and continuous recharge fluxes during the late-Holocene or the late-glacial (McIntosh et al., 2012). Modern groundwater recharge fluxes are highest in humid climates (Wada et al., 2010). Groundwater \(\delta^{18}O \) records only represent precipitation that recharges aquifers, meaning that groundwater-based \(\Delta^{18}O_{\text{late-glacial}} \) values could be biased to subintervals (e.g., interstadials, pluvial periods) within the late-Holocene and late-glacial intervals when recharge fluxes were at local maxima. Speleothem records may be further complicated by processes impacting the timing of calcite precipitation. Recent modelling suggests that calcite precipitation in caves located outside of the tropics is greatest during the cool season and reduced during summer months due to changes in ventilation, meaning that higher latitude speleothems record oxygen isotope compositions biased to cool season climate change (James et al., 2015). Other recent work suggests that speleothem \(\delta^{18}O \) data may be impacted by disequilibrium isotope effects (Asrat et al., 2008; Daëron et al., 2011; Kluge and Affek, 2012; Kluge et al., 2013) or by partial evaporation of drip waters resulting in \(^{18}O \)-enrichment (e.g., Cuthbert et al., 2014a) and greater fractionation due to evaporative cooling (Cuthbert et al., 2014b), potentially obscuring the preservation of primary precipitation isotope contents in the speleothem record. Compiled ice core records may have been influenced by post-depositional exchanges of ice with atmospheric vapour (Steen-Larsen et al., 2014). The impact of atmospheric vapour exchanges on ice core isotope records remains poorly understood. Potential biases in the preservation of precipitation \(\delta^{18}O \) differ among groundwater, glacial ice, and speleothem records, meaning that co-located records of differing record-type may preserve different \(\Delta^{18}O_{\text{late-glacial}} \) values under similar climate conditions. Finally, all proxy records may be impacted by past changes in the seasonality of precipitation, which can substantially impact annual precipitation \(\delta^{18}O \) values (e.g., Werner et al., 2000).

We cannot rule out the possibility that changes in seasonal biases of proxy record preservation occurred between the late-glacial and the late-Holocene and have impacted measured \(\Delta^{18}O_{\text{late-glacial}} \) values. Further, the chronologies of groundwaters and ice core records have uncertainties on the order of thousands of years, meaning that the time intervals used to calculate measured \(\Delta^{18}O_{\text{late-glacial}} \) values may be inaccurate. However, the plateauing of isotope content observed in most regional aquifers for 0–5000 years before present and for >20 000 years before present supports our interpreting these data as records of late-glacial to late-Holocene isotopic shifts (see figures in the Supplement). Notwithstanding potential \(\delta^{18}O \) preservation biases and chronology uncertainties, the global data synthesized here show patterns consistent with the enhanced distillation of advected air masses originating as (sub)tropical ocean evaporate and undergoing progressive, poleward rainout under cooler-than-modern late-glacial temperatures.

3.2 Simulated \(\Delta^{18}O_{\text{late-glacial}} \) Values

Simulated precipitation \(\Delta^{18}O_{\text{late-glacial}} \) values from five general circulation models are presented in Fig. 5. At least four of the five models agree on the sign of simulated \(\Delta^{18}O_{\text{late-glacial}} \) values — that is values consistently above or consistently below zero — for 68.8 % of grid cells covering Earth’s surface (68.7 % of over-ocean areas and 68.9 % of over land areas; multi-model calculation completed using three of four models as a threshold at high-latitudes where IsoGSM data were unavailable). Simulated \(\Delta^{18}O_{\text{late-glacial}} \) values are consistently negative over the North Atlantic Ocean and the Fennoscandian and Laurentide ice sheets and consistently positive over most of the tropical oceans, whereas poorer agreement is found over tropical land surfaces. The negative simulated \(\Delta^{18}O_{\text{late-glacial}} \) values over the Northern Hemisphere ice sheets and North Atlantic are likely driven by the difference in ice sheet topography and sea ice cover, between the late-glacial and pre-industrial cli-
Ice sheet topography is an important driver of simulated temperature, precipitation and atmospheric circulation during the last glacial maximum (e.g., Justino et al., 2005; Pausata et al., 2011b; Ullman et al., 2014). Therefore, it is likely that inter-model differences in paleo-ice sheet topographies impacts atmospheric circulation and thus high latitude simulated $\delta^{18}O_{\text{late-glacial}}$ values reported in this study (Fig. 5).

Differences in the specification of initial seawater $\delta^{18}O$ may also lead to inter-model differences in simulated $\delta^{18}O_{\text{late-glacial}}$ values. Seawater $\delta^{18}O$ is set to be globally homogeneous in CAM3iso, IsoGSM and LMDZ4, and heterogeneous in ECHAM5-wiso (using modern gridded seawater $\delta^{18}O$ heterogeneity of LeGrande and Schmidt, 2006) and GISSE2-R (coupled atmosphere-ocean model; seawater $\delta^{18}O$ is calculated by the ocean model). Including surface ocean $\delta^{18}O$ heterogeneities in model simulations impacts land precipitation $\delta^{18}O$ by up to ~ 1.5‰ relative to simulations with homogenous seawater $\delta^{18}O$ (LeGrande and Schmidt, 2006). However, different seawater $\delta^{18}O$ specifications cannot account for all inter-model differences in simulated $\delta^{18}O_{\text{late-glacial}}$ values.

The models also show deficiencies in simulating measured $\delta^{18}O_{\text{late-glacial}}$ values in the tropics, particularly over tropical Africa. This finding could, in part, relate to the high sensitivity of precipitation $\delta^{18}O$ to convective parameterizations (Lee et al., 2009; Field et al., 2014), although future research is required to test this. Another reason may be that the measured $\delta^{18}O_{\text{late-glacial}}$ integrates the hydroclimatological signal over multi-millennial timescales, whereas the simulated $\delta^{18}O_{\text{late-glacial}}$ values explicitly explore last glacial maximum and pre-industrial/present-day climate conditions. The smeared temporal resolution of groundwater-based measured $\delta^{18}O_{\text{late-glacial}}$ values due to storage and mixing in the aquifer precludes an ideal comparison of measured versus simulated $\delta^{18}O_{\text{late-glacial}}$ values. Further, as previously discussed in Sect. 3.1, the measured $\delta^{18}O_{\text{late-glacial}}$ values are susceptible to a number of potential biases that may obscure the magnitude and direction of late-glacial to late-Holocene precipitation $\delta^{18}O$ changes. Notwithstanding, models correctly simulate the sign of measured $\delta^{18}O_{\text{late-glacial}}$ values (i.e., positive or negative) in the extratropics more frequently than in the tropics. Better agreement in the sign of simulated versus measured $\delta^{18}O_{\text{late-glacial}}$ values in the extratropics compared to the tropics is likely linked to the substantial changes to extra-tropical ice-sheet topography and sea-ice cover between the two climate states in northern North America and Europe. Substantial changes to Northern Hemisphere ice volumes between the late-glacial and the late-Holocene likely enhanced upwind distillation of air masses leading to high-magnitude, negative $\delta^{18}O_{\text{late-glacial}}$ values that are well captured by the climate simulations. However, simulated $\delta^{18}O_{\text{late-glacial}}$ values over Antarctica and Greenland show large inter-model spread, suggesting that model-based interpretations of polar ice core records may vary widely among different atmospheric models.

Figure 4. Measured $\delta^{18}O_{\text{late-glacial}}$ value variability with distance to the nearest coast ($\Delta \delta^{18}O_{\text{late-glacial}} = \delta^{18}O_{\text{late-glacial}} - \delta^{18}O_{\text{late-Holocene}}$). Tropical and subtropical locations are shown in dark blue (<35° absolute latitude), extra-tropical sites are shown in light grey (>35° absolute latitude). The shape of each point corresponds to groundwater and ground ice (circles) or cave calcite (i.e., speleothems; triangles). Error bars mark one standard deviation from the mean.
Figure 5. Simulated precipitation δ¹⁸O differences between the last glacial maximum and pre-industrial time periods (i.e., δ¹⁸O_Last Glacial Maximum − δ¹⁸O_Pre-industrial) from five general circulation models: CAM3iso, ECHAM5-wiso, GISSE2-R, IsoGSM and LMDZ4 (Yoshimura et al., 2003; Legrande and Schmidt, 2008, 2009; Risi et al., 2010a; Noone and Sturm, 2010; Pausata et al., 2011a; Werner et al., 2011). Circles (groundwater), triangles (speleothems) and diamonds (ice cores) show measured δ¹⁸O values from paleoclimate proxy records (Fig. 1, original data presented in Tables S2–S5). The panel entitled “Composite” shows the multi-model ensemble median simulated δ¹⁸O value where at least four of the five models agree on the sign of simulated δ¹⁸O values (i.e., positive or negative; all five model simulations of δ¹⁸O_Last Glacial Maximum − δ¹⁸O_Pre-industrial were used to calculate multi-model median shown in “Composite”).

3.3 Regional measured and simulated Δ¹⁸O late-glacial values

3.3.1 Australia and Oceania

Measured Δ¹⁸O values from Australia and Oceania fall between −1 and +1 ‰ (Fig. 2). Australian climate during the last glacial time period was more arid (Nanson et al., 1992), dustier (Chen et al., 1993) and cooler (Miller et al., 1997) than present day. Simulated Δ¹⁸O values across Australia are variable among the five models. Measured Δ¹⁸O values across Oceania have been attributed to temporal changes in the strength of monsoons and convective rains (Aggarwal et al., 2004; Partin et al., 2007; Williams et al., 2010) potentially impacted by late-glacial to late-Holocene shifts in the position of the intertropical convergence zone (Lewis et al., 2010, 2011).

3.3.2 Southeast Asia

Measured Δ¹⁸O values from southeastern Asia range from −2.3 to +1.7 ‰. The highest regional measured Δ¹⁸O values are found in Bangladesh (measured Δ¹⁸O of +1.5 ± 1.3 ‰; Aggarwal et al., 2000) and in central and southeastern China (measured Δ¹⁸O of +0.3 to +1.7 ‰; Wang et al., 2001; Yuan et al., 2004; Dykoski et al., 2005; Cai et al., 2010; Yang et al., 2010). General circulation models have positive simulated Δ¹⁸O values near to the Chinese coasts, but are more variable across western and northern China (Fig. 5). Chinese speleothem records show near-zero or positive measured Δ¹⁸O values interpreted to reflect the reduced strength of the East Asian (Wang et al., 2001; Dykoski et al., 2005; Cosford et al., 2008) or Indian monsoons (Pausata et al., 2011a). Further research suggests that Chinese speleothem δ¹⁸O variations reflect changes to regional moisture sources and the intensity or provenance of atmo-
spheric transport pathways (LeGrande and Schmidt, 2009; Dayem et al., 2010; Lewis et al., 2010; Maher and Thompson, 2012; Caley et al., 2014b; Tan, 2014).

North China Plain groundwaters have high-magnitude, negative $\Delta^{18}O_{\text{late-glacial}}$ values (measured $\Delta^{18}O_{\text{late-glacial}}$ of $-2.3 \pm 0.6 \%$; Chen et al., 2003) compared to coastal, more southerly counterparts. Combining the negative measured $\Delta^{18}O_{\text{late-glacial}}$ in northern China (Chen et al., 2003; Ma et al., 2008; Currell et al., 2012; Li et al., 2015) with the positive measured $\Delta^{18}O_{\text{late-glacial}}$ values in central and southeastern China (Wang et al., 2001; Yuan et al., 2004; Dykoski et al., 2005; Cai et al., 2010; Yang et al., 2010) reveals a south-to-north decrease from positive (south) to negative (north) measured $\Delta^{18}O_{\text{late-glacial}}$ values (Figs. 2 and 6). Previous studies of modern precipitation have identified increasing precipitation $\delta^{18}O$ values from the coast to inland China during the wet season, sharply contrasting spatial patterns expected from Rayleigh distillation (Aragüas-Aragüas et al., 1998). A more recent work suggests that low wet-season precipitation $\delta^{18}O$ values over southern China are controlled by the deflection of westerlies around the Tibetan Plateau, whereas precipitation $\delta^{18}O$ values over northern China are controlled by local-scale rainfall and below-cloud evaporation (Lee et al., 2012). Therefore, measured $\Delta^{18}O_{\text{late-glacial}}$ values from southern China may reflect changes to atmospheric circulation at broader spatial scales, whereas measured $\Delta^{18}O_{\text{late-glacial}}$ values from northern China may indicate changes to more localized atmospheric conditions impacting processes such as raindrop evaporation in addition to meso- and synoptic-scale circulation changes.

3.3.3 Africa

Measured $\Delta^{18}O_{\text{late-glacial}}$ values from Africa range from -2.9 to $+0.1 \%$ (Figs. 2 and 6). Sixteen of 17 measured $\Delta^{18}O_{\text{late-glacial}}$ values from Africa are negative. Near-zero measured $\Delta^{18}O_{\text{late-glacial}}$ values are generally found near to coast (e.g., Senegal $\Delta^{18}O_{\text{late-glacial}}$ of $+0.1 \pm 0.8 \%$; Madione et al., 2014), whereas higher magnitude, negative measured $\Delta^{18}O_{\text{late-glacial}}$ values in Africa are found farther inland (e.g., Niger $\Delta^{18}O_{\text{late-glacial}}$ values of -2.3 ± 2.0 and $-2.9 \pm 0.9 \%$; ~800 km from the Atlantic coast). General circulation model $\Delta^{18}O_{\text{late-glacial}}$ values show poor agreement with measured $\Delta^{18}O_{\text{late-glacial}}$ over tropical Africa compared to model-measured comparisons for Europe and North America (Fig. 5), with positive simulated $\Delta^{18}O_{\text{late-glacial}}$ values predicted over large parts of Africa where negative $\Delta^{18}O_{\text{late-glacial}}$ values are measured. Figure 5 shows that Africa has the largest inter-model and model-measurement disagreements in the sign of $\Delta^{18}O_{\text{late-glacial}}$ values of the continents.

Northern African hydrological processes are influenced by interlinked controls such as meridional shifts in the position of the intertropical convergence zone (Arbuszewski et al., 2013) and the strength of Atlantic meridional overturning circulation (Mulitza et al., 2008). Paleowater chemistry indicates that northern Africa was at least 2 °C cooler than today (Gouandou et al., 1998) and that westerly moisture transport was stronger than the present during the late-glacial (Sultan et al., 1997; Abouelmagd et al., 2012).

Tropical Africa was 2 to 4 °C cooler and more arid than present day at the last glacial maximum (Powers et al., 2005; Tierney et al., 2008). Early- and late-Holocene rainfall and isotope compositions were highly variable across Africa (Tierney et al., 2008, 2013; Schefuß et al., 2011; Otto-Bliesner et al., 2014). Tropical African rainfall originates from both Indian and Atlantic sources, with Atlantic-sourced moisture travelling across the Congo rainforest (Levin et al., 2009). Lower-than-modern continental moisture recycling during the late-glacial may partially explain negative measured $\Delta^{18}O_{\text{late-glacial}}$ values across some regions of inland tropical Africa (e.g., Risi et al., 2013). Negative measured $\Delta^{18}O_{\text{late-glacial}}$ values in tropical Africa could also be interpreted to reflect higher-than-modern upwind rainout during the late-glacial (see Risi et al., 2008, 2010b; Lee et al., 2009; Scholl et al., 2009; Lekshmy et al., 2014; Samuels-Crow et al., 2014); however, this explanation necessitates stronger-than-modern convection during the late-glacial, an explanation that would contradict the established cooler-than-modern land surface temperatures. Therefore, changes to atmospheric transport distances and vapour origins are...
more likely responsible for negative measured $\Delta^{18}O_{\text{late-glacial}}$ values across tropical Africa (Lewis et al., 2010).

3.3.4 Europe and the Mediterranean

Measured $\Delta^{18}O_{\text{late-glacial}}$ values across Europe, the Middle-East and the eastern Mediterranean range from -5.7 to $+1.3\%e$. Eighty percent of measured $\Delta^{18}O_{\text{late-glacial}}$ values across these regions are negative. All five general circulation models agree on negative simulated $\Delta^{18}O_{\text{late-glacial}}$ values across Europe, consistent with the negative measured $\Delta^{18}O_{\text{late-glacial}}$ values across the majority of Europe. Measured $\Delta^{18}O_{\text{late-glacial}}$ values are generally higher in western Europe (0.0 to $-1.0\%e$ in Portugal, the United Kingdom and France) than in eastern Europe (-1.0 to $-5.7\%e$ in Poland, Hungary and Turkey; Stute and Deak, 1989; Le Gal La Salle et al., 1996; Darling et al., 1997; Barbecot et al., 2000; Zuber et al., 2004; Galego Fernandes and Carreira, 2008; Celle-Jeanton et al., 2009; Varsányi et al., 2011; Samborska et al., 2013; Arslan et al., 2013). This spatial pattern of $\Delta^{18}O_{\text{late-glacial}}$ values is consistent with enhanced isotopic distillation of westerlies during the late-glacial due to cooler-than-modern final condensation temperatures.

High magnitude, negative measured $\Delta^{18}O_{\text{late-glacial}}$ values are located in Turkey and Georgia south and east of the Black Sea (-2.8 ± 1.0 to $-5.7 \pm 0.4\%e$; Fleitmann et al., 2009; Arslan et al., 2013; Melikadze et al., 2014). Westerly air mass trajectories distal to the Fennoscandian ice sheet topography may not have changed considerably since the late-glacial over western and central Europe (Rozanski, 1985; Loosli et al., 2001). Therefore, higher, near-zero measured $\Delta^{18}O_{\text{late-glacial}}$ values in western Europe and lower, negative measured $\Delta^{18}O_{\text{late-glacial}}$ values in eastern Europe indicate enhanced distillation of advected air masses during the late-glacial relative to the late-Holocene.

Changes to freeze-thaw conditions of the ground surface between the latter half of the last glacial time period and the modern climates may have impacted the seasonality of the fraction of precipitation recharging aquifers and thus $\Delta^{18}O_{\text{late-glacial}}$ (Darling, 2004, 2011; Jasechko et al., 2014). Geomorphic evidence suggests permafrost covered portions of Hungary at the last glacial maximum, suggesting that land temperatures may have been up to $15\degree\text{C}$ cooler than present day (Fábián et al., 2014), a larger late-glacial to late-Holocene temperature shift than earlier, noble gas-based reconstructions ($5\degree\text{C}$; Deák et al., 1987). European pollen records indicate that northern Europe was tundra-like and that southern Europe was semi-arid during the last glacial maximum (Harrison and Prentice, 2003; Clark et al., 2012). The European late-glacial to late-Holocene transition from semi-arid deserts to temperate forests could have lowered $\Delta^{18}O_{\text{late-glacial}}$ values as groundwater recharge ratios transitioned from more extreme winter-biased (e.g., semi-arid lands during the late-glacial) to less extreme winter-biased groundwater recharge ratios (e.g., forests during late-Holocene; Jasechko et al., 2014).

3.3.5 South America

Measured $\Delta^{18}O_{\text{late-glacial}}$ values across South America range from -6.3 to $+0.6\%e$ (Figs. 2 and 6). The highest-magnitude, negative measured $\Delta^{18}O_{\text{late-glacial}}$ values are found in Andean ice cores ($\Delta^{18}O_{\text{late-glacial}}$ of -4.6 ± 1.0 and -6.3 ± 1.3; Thompson et al., 1995, 1998). Here the importance of upstream convection upon modern Andean precipitation $\delta^{18}O$ has been highlighted at inter-annual (Hoffmann et al., 2003; Vuille and Werner, 2005), seasonal (Vimeux et al., 2005; Samuels-Crow et al., 2014) and daily timescales (Vimeux et al., 2011). It is therefore possible that upstream convection controls past changes to Andean precipitation isotope compositions recorded in ice cores.

The measured groundwater $\Delta^{18}O_{\text{late-glacial}}$ value located in eastern Brazil is $-2.7 \pm 1.3\%e$ (Salati et al., 1974). Eastern Brazil was $5\degree\text{C}$ cooler than today during the latter half of the last glacial period (Stute et al., 1995b). Four of the five general circulation models simulate positive $\Delta^{18}O_{\text{late-glacial}}$ values across eastern Brazil (Fig. 5), highlighting a difference between simulated and measured $\Delta^{18}O_{\text{late-glacial}}$ values in parts of the tropics. The negative measured $\Delta^{18}O_{\text{late-glacial}}$ value in eastern Brazil has been previously interpreted to reflect higher-than-modern precipitation during the last glacial time period (Salati et al., 1974). Lewis et al. (2010) show that localized rainfall governs precipitation $\delta^{18}O$ in eastern Brazil. Modern precipitation $\delta^{18}O$ values are lowest in eastern Brazil when precipitation rates are at a maximum. Extending Lewis et al.’s interpretation linking local precipitation amount to precipitation $\delta^{18}O$ would suggest that the negative measured $\Delta^{18}O_{\text{late-glacial}}$ value found in eastern Brazil may indeed record wetter-than-modern conditions during the late-glacial as proposed by Salati et al. (1974). Further, disagreement between measured and simulated $\Delta^{18}O_{\text{late-glacial}}$ in eastern Brazil highlights the need to critically evaluate climate model performance in regions where the precipitation amount is closely correlated with precipitation $\delta^{18}O$.

3.3.6 North America

Measured $\Delta^{18}O_{\text{late-glacial}}$ from North American proxy records range from -5.5 to $+1.0\%e$. Canadian records of groundwater recharge that took place beneath the Laurentide ice sheet are not included in this synthesis (“subglacial recharge”; Grasby and Chen, 2005; Ferguson et al., 2007; McIntosh et al., 2012; Ferguson and Jasechko, 2015). These records were excluded because the subglacial meltwaters that recharged aquifers likely reflect precipitation that fell elsewhere on the paleo-ice sheet, potentially complicating the comparison of groundwater isotope compositions for the late-Holocene and last glacial time period.
Measured $\Delta^{18}O_{\text{late-glacial}}$ values along the USA east coast show the highest, positive values in Georgia (latitude: $32^\circ N$; measured $\Delta^{18}O_{\text{late-glacial}}$ of $+1.0\%e$; Clark et al., 1997), decreasing northward to near-zero measured $\Delta^{18}O_{\text{late-glacial}}$ values in coastal Maryland (latitude $39^\circ N$; measured $\Delta^{18}O_{\text{late-glacial}}$ of $-0.1 \pm 0.4\%e$; Aeschbach-Hertig et al., 2002). Decreasing $\Delta^{18}O_{\text{late-glacial}}$ values with increasing latitude along the USA east coast may be explained in part by the isotopic distillation of air masses advected northward from the sub-tropics under cooler-than-modern final atmospheric condensation temperatures. Indeed, paleoclimate records indicate that Maryland was more arid and as much as 9–12°C cooler during the late-glacial relative to the late-Holocene (Purdy et al., 1996; Aeschbach-Hertig et al., 2002; Plummer et al., 2012). In addition to temperature change, late-glacial precipitation isotope compositions along eastern USA coastline were likely impacted by the lower-than-modern late-glacial sea levels, which changed overlaid atmospheric transport distances between the late-glacial and late-Holocene (Clark et al., 1997; Aeschbach-Hertig et al., 2002; Tharammal et al., 2013).

Measured $\Delta^{18}O_{\text{late-glacial}}$ values in the central and southwestern USA have the highest magnitude, negative measured $\Delta^{18}O_{\text{late-glacial}}$ values of temperate North America, ranging from -1.0 to $-3.4\%e$. Central and southwestern USA measured $\Delta^{18}O_{\text{late-glacial}}$ values contrast the positive measured $\Delta^{18}O_{\text{late-glacial}}$ values found along the eastern USA coast at similar latitudes. Consistently negative $\Delta^{18}O_{\text{late-glacial}}$ values in central and southwest USA suggest that advected moisture to the region underwent greater upstream air mass distillation during the late-glacial than under modern climate. Pollen, vadose zone and groundwater records show that late-glacial southwestern USA was $\sim 4^\circ C$ cooler, had greater groundwater recharge fluxes, and had more widespread forests than present day (Stute et al., 1992, 1995a; Scanlon et al., 2003; Williams, 2003). Negative measured $\Delta^{18}O_{\text{late-glacial}}$ values found in the southwest USA have been ascribed to lower-than-modern summer precipitation (New Mexico, Phillips et al., 1986), latitudinal shifts in the positions of the polar jet stream and the intertropical convergence zone (New Mexico, Asmerom et al., 2010) and changes to over-ocean humidity, temperature or moisture sources (Idaho, Schlegel et al., 2009). Wagner et al. (2010) interpret decreases to southwestern precipitation $\delta^{18}O$ to reflect cooler and more-humid conditions. Extending this interpretation to negative measured $\Delta^{18}O_{\text{late-glacial}}$ values found across the southwestern USA values supports earlier conclusions that the region was cooler and more humid than today during the late-glacial, possibly linked to changes in air mass trajectories and moisture sources (Asmerom et al., 2010; Wagner et al., 2010). Simulated $\Delta^{18}O_{\text{late-glacial}}$ values across North America closely match spatial patterns of measured $\Delta^{18}O_{\text{late-glacial}}$ synthesized in this study. Strong, multi-model agreement with measured $\Delta^{18}O_{\text{late-glacial}}$ patterns supports continued application of iso-e and general circulation models when interpreting North American precipitation isotope proxy records.

4 Conclusions

While changes to the isotope content of precipitation between the last glacial time period and more recent times has been widely documented, few studies have synthesized these dispersed data to explore the global patterns of $\delta^{18}O$ change driven by past shifts to regional climate. In this study we compile groundwater, speleothem, ice core and ground ice records of $\delta^{18}O$ shifts between the late-glacial (20 to ~ 50 thousand years ago) and the late-Holocene (within the past 5000 years). Late-glacial to late-Holocene $\delta^{18}O$ shifts range from $-7.1\%e$ (i.e., $\delta^{18}O_{\text{late-glacial}} < \delta^{18}O_{\text{late-Holocene}}$) to $+1.7$ (i.e., $\delta^{18}O_{\text{late-glacial}} > \delta^{18}O_{\text{late-Holocene}}$). Aquifers with positive measured $\Delta^{18}O_{\text{late-glacial}}$ values (23 % of records) are most common along the subtropical coasts. This spatial pattern suggests that isotopic distillation of advected air masses was greater during the late-glacial than under present climate, likely due to the non-linear nature of Rayleigh distillation, accentuated by larger glacial-interglacial atmospheric temperature changes at the poles relative to lower latitudes. Regionally divergent precipitation $\delta^{18}O$ responses to the $\sim 4^\circ C$ of global warming occurring between the late-glacial and the late-Holocene suggest that continued monitoring of modern precipitation isotope contents may prove useful for detecting hydrologic changes due to ongoing, human-induced climate change. Future paleoprecipitation proxy record $\delta^{18}O$ research can use these new global maps of $\Delta^{18}O_{\text{late-glacial}}$ records to target and prioritize field sites. In the near term, a global compilation of large lake sediment isotope records that accounts for paleo-evaporative isotope effects could enhance spatial coverage of interglacial-glacial $\delta^{18}O$ shifts.

General circulation models agree on the sign and magnitude of terrestrial precipitation $\Delta^{18}O_{\text{late-glacial}}$ values better in the extra-tropics than in the tropics. Differences in simulated precipitation isotope composition changes amongst the models might be linked to different parameterizations of sea-water $\delta^{18}O$, glacial topography and convective rainfall, however, these hypotheses require further testing. Future model research should focus on quantifying the relative roles of inter-model spread in the simulated climate versus the isotopic response to climate change on resulting simulated precipitation $\delta^{18}O$. This would provide guidelines to interpret model-data isotopic differences and to identify what aspects climate models have greatest difficulties capturing.

The Supplement related to this article is available online at doi:10.5194/cp-11-1375-2015-supplement.
Acknowledgements. We acknowledge support from the University of Calgary’s Open Access Author’s Fund, an NSERC Discovery Grant held by S. Jasechko, the UNESCO IGCP-618 project (Paleoclimate information obtained from past-recharged groundwater), the G@GPS network, and the Caswell Silver Foundation. We are thankful for the assessments of Ph. Négrel and two anonymous reviewers. We also thank T. W. D. Edwards for insightful comments on an earlier version of the manuscript.

Edited by: V. Masson-Delmotte

References

S. Jasechko et al.: Late-glacial to late-Holocene shifts

Yang, Y., Yuan, D., Cheng, H., Zhang, M., Qin, J., Lin, Y., XiaoYan, Z., and Edwards, R. L.: Precise dating of abrupt shifts in the Asian Monsoon during the last deglaciation based on stalagmite

