1. Advanced Microwave Precipitation Radiometer (AMPR)

AMPR is a cross-track scanning, airborne passive microwave radiometer maintained by NASA Marshall Space Flight Center. It has four microwave frequencies (10.7, 19.35, 37.1, and 85.5 GHz). Cross-track scanning results in a rotating polarization basis as function of scan angle:

- **Channel A**: Left edge full V, right edge full H
- **Channel B**: Left edge full H, right edge full V

Version 2 AMPR data from the Integrated Precipitation and Hydrology Experiment (IPHEx) are now available. New for IPHEx is that AMPR data are released in Network Common Data Format 4.0 (netCDF4) format, greatly simplifying data ingest.

Version 2.0 Highlights

- Data quality flag for each channel
- Incidence angle
- High-resolution land/water fraction (250-m MODIS)

Good Data Characteristics

- QC Incidence Angle = 1
- Pixel FOV < 0.1 or Pixel FOV > 0.9, (i.e. mostly land or mostly water)
- QC Flag Value <= 3

Quicklook imagery with QC flagging (blue lines)

QC flags are integer-based, the higher the value the worse the data likely are. Based on 2D behavior of TB values. Sensitive to noise, coastal regions, and sharp gradients near convection.

Python AMPR Data Toolkit (PyAMPR) open sourced and available on NASA's official GitHub repository:

PyAMPR reads new IPHEx netCDF as well as legacy ASCII-format data from past projects. Demo and testing IPython notebooks available on GitHub.

2. NPOL Radar Quality Control and IPHEx Data Fusion

NASA’s S-band polarimetric radar (NPOL) was deployed near the SC/NC border during IPHEx. Significant beam blockage from nearby terrain was expected based on pre-campaign modeling. However, observations revealed additional blockage from other obstacles. All of this blockage is in the process being corrected using techniques that exploit the self-consistency of polarimetric radar variables in pure rain (Lang et al. 2009; JTECH). A new Python module (PyBlock) has been developed to simplify this process and is currently being open sourced.

Data Fusion

Ongoing work is seeking to merge precipitation information (e.g., Z, D₀, R, etc.) from multiple platforms to create 4D microphysical datasets grids for the 11-12 June 2014 significant hydrometeorological event.

Example of multi-radar data fusion (NPOL + NEXRAD), powered by Py ART. Precipitation retrievals are gridded along with standard variables like reflectivity.