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Thermal Conductivity of Gas Mixtures in Chemical Equilibrium, IT

: RicuArDb 8. BroxAw
Lewis Research Center, National Aeronautics and Space Administration, Cleveland, Ohio
(Received November 2, 1959)

The expression for the thermal conductivity of gas mixtures in chemical equilibrium is presented in &
simplet and less restrictive form. This new form is shown to be equivalent to the previous equations.

IN a previots papet! an explicit expression for the
increase in thermal conductivity due to chemical
teaction was developed for gas mixtures in which
chémical equilibtium exists locally throughout the
temperature gradient. This expression is applicable to
mixturés involving any number of reactants, inert
diluents, and chemical equilibria. It is the purpose
of this brief paper to present the expression for thermal
conductivity due to reaction in a simpler and less
testrictive fotm, and to show that this form is equiva-
lent to previots equations.

A system of » independent chemical reactions in-
volving u chemical species (both reactants and dilyents)
may be written in balanced form as

SRty s, B ooty oo
k=1

Here X* reptesents the kth chemical species and ny is
thie stoichiomettic coefficient for species % in reaction 4.
The heat of this reaction is

A#l = é:na,z'z. $u1,2, vesf, oo, (2)
1

whete the H, are the enthalpies of the species referred
to a common base. For this system the thermal con-

1 J.N. Butler and R. S. Btokaw, J. Chem. Phys. 26, 1636 (1957).

ductivity due to reacfion is

Ay oo 40 AH,
A oo 45, AR,
1 |AHy ¢« AH, 0. ‘
}"—-—-RT" Ay +oe A, (3)
;4.lv s A.n

where

'

Ay=Ay= E ﬁ: (RT/DiP) s (na/22)

ket L=kt
“"("ll/xl)][("jk/xk)“‘(”ﬂ/xl)] bj=1,2000. (4)

Here R is the gas constant in ptessure-volume units, 7'

* is the absolute temperature, P the pressure, and Dy

the binary diffusion coefficient between components
k and I; x, and %, are the corresponding molefractions.
Any gas inert to reaction 7 or  must be included, but has
a zero stoichiometric coefficient for the reaction in
which it does not participate. :

Equations (1)-(4) are most easily verified by as-
suming them correct and deriving the previous result
(Eqgs. (10)-(12) of refetence 1). In the previous paper
an independent component was identified in each reac-
tion and given a stoichiomettic coefficient of —1. This



forin' i Be achieved as follows:: First Fq, (1) is re-
written'

Xi= t "“’X. 1::1 2 oo-’o.-y,, . (5))
Kot gt ‘

© where #u'==na/in We can transform Eq. (3) By
dividing éach row and column by theé —ny or =~y

appropriate to' that row or column in' both numerator

and denominatoy déterminants. The form of Eq. (3)
is maintained, but the quantities AH; and A4 are
transformed, and indicated by primes:

AH (== (AH /)= & t ”‘a'ﬂﬁﬂa (6)

The 4/ o até giveén by Eq (4) 1f the m Rity My and

#;1 aré teplaced by naly Wiy ni'y and sy’ Equations
§$) and (6) aré now of the form used in reference 1.
t réemains only to show that the A aré equal to the

Ag and Ay defined by Eqs. (10) and (11) of refer-
éncé 1. To prove this we split the double sum of Eq.

(4) into two séries. The first series sums over the

independent components from 1 to »; summation in
this series is indicated by the index. p ot ¢. The second
séties sums over all other species from »4-1 to u; sum-
mation in this instance is over indices # and s. Accord-

ingly; :
Ay=i5 E-i% §+§,§+*§“§, )

Smcef by definition the independent species occut in
ohily oneé teaction; we find

g/ =t/==1, $,4=1; ﬁip’=”n’= =1, pq=4

. =0;  p64; =0, p;9%J.
If we define Aii=RT/DyiP; we find that the terms of
Eq. (7) are,

i . ' :
%Z E=—Am .7‘?‘1:

=1 g=1

’ ' .
= 2 Aulao/z); j=i
p=1,p2i
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Z t f: E”u "lr'Ar(xt/x')

p=l r=ptl  repd] pe

'+' t (”#'A:’r"" ”ir'A {r) y j# i
re=ppll

o ﬁ i "fr'zAm(xpyxr)

re=pl p=1,psE{

+ tm.[(xf-l'—n.v’x‘)’/xixr]» j=t
te=p41

; t ﬁ i ﬁ: A"(”w By~ Mis' Xp) (”ﬂ‘ Xy Njy £

Fempbl gyl eyl gerhl Xy

j#i

i t An[:("w ®e= e 2s) ’/xrxa]; j=i

Pyl gl

" After summing . the appropriate terms of Eq. (7),
the elements A,/ and 4;/ are found to be identical
to the elements Ay and A of reference 1. (There
are differences in the symbols, particulatly in the
letters chosen for the indices.) Hence, Eqs. (1) through -
(4) are entirely equivalent to the expression for the
thermal conductivity of a reacting gas presented here-
tofore.

In conclusion, it is perhaps worthwhile to state
specdically how the formulas presented here are super-
ior to the previous expressions. First and foremost,
it is not necessary to identify a specific independent
component with each reaction; that is to say Eq. (1)
is less restrictive than Eq. (5). As a consequence the
contribution of each component to each reaction is
handled entirely through the stoichiomettic coefficients,
and a single, and relatively simple, expression suffices
for all the 44 [Eq. (4)]. This is not only convenient
for hand calculations; it should also simplify program-
ing fot computing machines.
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