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Batteries for Extravehicular Actitvies
• >265 Wh/kg, >550 Wh/liter, 200 cycles, human safety rating

Batteries for Landers
• >200 Wh/kg, 10 cycles, human safety rating

Batteries for Rovers
• >200 Wh/kg, 200 cycles, human safety rating

Fuel Cells for Landers and Mobility Systems
• >220 hours maintenance free operation, >100 W/kg, >73% η, 

Operable on residual propellants

Regenerative Fuel Cells for Surface Power
• >10,000 hours maintenance free operation, >30 W/kg, >50% η

Advanced Space Power Systems Technologies:
Challenges for human space exploration
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Lithium-Ion Batteries –
Component Development

• Silicon alloy anode - Physical Sciences, Inc.
• Carbon nanofibers with silicon whiskers
• Practical anode loading >4 mg/cm2

• Initial capacity >1000 mAh/g
• Rate capability C/10 to C/1
• 50 cycles in 35 Ah cells  
• Scalable production process

• High capacity, high voltage lithiated-mixed-metal-oxide cathode – NASA/UT Austin
• Li1.2Mn0.54Ni0.13Co0.13O2
• AlPO4 coating (1-2 w%) – Physical Sciences
• Practical tap density 1.6 g/cc

• Initial capacity >250 mAh/kg (uncoated)
• Initial capacity >180 mAh/kg (coated)
• 100 cycles in half-cells
• Scalable production process – scaled-up the synthesis to ~2 kg

• Low-flammability, high voltage electrolyte – NASA JPL
• Triphenylphosphate (TPP) flame retardant additive (FRA) with LiBOB for high 

voltage compatibility 
• Fluoroethylene carbonate for compatibility with Silicon anodes
• 5v%, 10v%, and 15v% FRA show enhanced flame retardance at the component 

level (reduced self-extinguishing time from flame test)
• 5v% and 10v% FRA incorporated into conventional Li-ion cells with 4V NCA 

cathodes showed impressive cycle life – better than baseline cells
• 10v% FRA incorporated into 6 Ah cells for safety and abuse testing 

We also assessed NMC cathode 
materials from BASF and Toda 

(coated and uncoated), 
and Si anode materials from 3M.

Image: Physical Science
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Battery Cell Packaging

Coin cell

Pouch cell
~1 Ah size

18650 (3 Ah)
Cylindrical cell

VL 52E (52 Ah)
Cylindrical cell

EP Pouch cell
~6 Ah size

VL3A (6 Ah)
Cylindrical cell

35 Ah
Prismatic cell

Components developed under NASA’s Advanced Space Power Systems Project were 
scaled-up and fabricated into in the large format cells shown below.  

PSI silicon anode in 35 Ah prismatic case 
fabricated by Yardney Technical Products

NMC cathode (against commercial anode) 
and 3M Anode (against commercial cathode) 
in VL 52E fabricated by Saft America.

Low flammability electrolytes were 
demonstrated in both configurations, 

and also safety tested in the VL 3A 
case fabricated by Saft America 

Note: Capacity (Ah) values shown are nominal; exact value is dependent on the components used within the cell.

Lithium-Ion Batteries –
Cell Formats



Overcharge Post-Test Results for S/N: 1429x-15.  Venting 
and fire during overcharge test.

Overcharge Post-Test Results for S/N: 1429x-40. Venting on 
the non-terminal end of the cell.

Overcharge Pre/Post Test Result for Cell N2-1052-2

Internal Short Circuit Pre-Test Configuration 
and Post-Test Results for S/N: 4

Lithium-Ion Batteries –
Cell Safety Testing



Lithium Ion Battery 
Cells

Cell Components Capacity 
(Ah)

Specific 
Energy 

(Wh/kg)

Energy 
Density 
(Wh/l)

Cycle 
Life 

Charge 
Voltage 

(V)
Threshold KPP Goal 210 500 200

KPP Goal 265 550 200
Commercial NCA Cathode

Low Flammability 
Electrolyte (Gen IV)

Commercial Graphite Anode

Commercial NCA Cathode
Commerical Electrolyte 

(Saft)

Commercial Graphite Anode

NMC Cathodes
Commerical Electrolyte 

(Saft)

Commercial Graphite Anode

Commercial NCA Cathode
Commerical Electrolyte 

(Saft)
Silicon Anode (3M)

Commercial NCA Cathode
Low Flammability 

Electrolyte (Gen IV)
Silicon Anode (PSI)

NCA - 3M Si                                         
VL52E  2221 48 151 320 20

NMC - C                                               
VL52E  2485 53

50 4.15NCA - PSI Si  - TPP                           
Prismatic  LiAX32IX 35 191 505

4.2

189 386 12 4.7

4.2LtWt NCA - C                                       
VL52E   2097 53 198 402 >300

Measured Cell Peformance
at 10 deg C and 

C/10 charge/discharge rate

LtWt NCA - C  -TPP                                         
VL52E  2098 51 188 381 >300 4.2

Known manufacturing defects – cells 
have been re-built and now get ~60 Ah

High-rate (C/2) cycling damaged cells –
artificially limited measured cycle life

First successful build with advanced 
cathode. Argonne National Lab has 

continued interest.

Commercial 
chemistry with 

lightweight cell 
package

• Advanced electrodes 
successfully scaled-up into 
large format cells for the first 
time.

• Aggressive goals not met, but 
anode reached 91% of 
expected performance with 
low flammability electrolyte.

• Cycle life values 
are ok for lander 
applications 
but not EVA.

+

meets predicted performance
>90% of predicted performance
>80% of predicted performance
< 80% of predicted performance

Lithium-Ion Batteries –
Cell Performance Testing



BUILT AND TESTED UNDER ASPS

SOA = Li-Ion Cells flown on Mars Exploration Rover
Std NCA – C = Saft Commercial VL52E cells (terrestrial use).  NCA cathode, Carbon anode, commercial Saft electrolyte.

LW NCA-C-TPP      = Lightweight VL52E packaging with NCA cathode, “Gen IV” TPP electrolyte, and Carbon anode.
LW NCA – C = Lightweight VL52E packaging  with NCA cathode, commercial Saft electrolyte, and Carbon anode.
NMC – C = VL52E cells with NMC cathode, commercial Saft electrolyte, and Carbon anode.
NCA – 3M Si = VL52E cells with NCA cathode, commercial Saft electrolyte, and Silicon anode from 3M. (known manufacturing defect)
NCA – PSI Si-TPP    = 30 Ah PSI cell.  NCA cathode, “Gen IV” TPP low flammability electrolyte, Silicon anode from PSI.
NMC – Si = VL52E cells with NMC cathode, commercial Saft electrolyte, and advanced Silicon anode from best source.

NCA – PSI Si-
TPP
Cells 

All except PSI Si 
cells

GCD Advanced Space Power Systems Project: 
High Energy Li-Ion Batteries Specific Energy
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Comparison 

Comparison of Large Format and Small Format Li-Ion Battery Cells

Small format cells show 
higher performance and 
cycle life than large 
format cells.
• Performance is ~15% 

better in a pouch cell.

Large format cells retain 
their mass advantage 
better when integrated 
into full batteries
• Fewer interconnects
• Fewer terminals
• Simpler control circuitry

10X more small format 
(~4 Ah) cells needed than 
large format (~40 Ah) 
cells
• 1000’s vs 100’s 

SOA 
flight cell

SOA 
flight cell Peach bars < 6 Ah cells

Green bars >30 Ah cells

All data measured (or estimated) 
at a charge/discharge rate of C/10, 
in prismatic or cylindrical formats,

at +10 °C.

SOA 
flight cell

SOA 
flight cell

-15% assumed going from pouch to prismatic, 
-5% assumed going from 200C to 100C.

NASA ASPS data

NASA ASPS data



Fuel Cell and Electrolyzer Technology 
Development Key Performance Parameters 

Balance of Plant Mass 9-21 kg 
Fuel Cell 
System 

Power Density 88-136   W/kg for Fuel Cell System 
107-231 W/kg at Fuel Cell Stack level 

Membrane Electrode 
Assembly (MEA) 
Efficiency 

73-75% and .90-.92V individual cell 
Voltage @200 mA/cm2 for Fuel 
Cell MEA 

 
System Efficiency 71-74% at Fuel Cell level (1-2% 

parasitic losses) 
Operating Life 5000-10000  hrs maintenance-free for 

MEA 
220  hrs for a Fuel Cell System 

Regenerative 
Fuel Cell 
System  

Power Density 25-36     W/kg for Regenerative Fuel 
Cell System (not including 
tanks) 

Membrane Electrode 
Assembly (MEA) 
Efficiency 

84-85% and 1.46-1.44V individual cell 
Voltage @200 mA/cm2 for 
Electrolyzer Cell MEA 

62-64% round trip efficiency for 
Regenerative Fuel Cell MEA 

System Efficiency 43-54% for Regenerative Fuel Cell 
System (5-10% parasitic losses 
and high pressure penalty of 10-
20%) 

Operating Life 5000-10000  hrs maintenance-free for 
MEA 

5000-10000  hrs for a Regenerative 
Fuel Cell System 

 

Fuel Cells for 
Surface Mobility Systems 

and Landers

Regenerative Fuel Cells for 
Surface Power Systems

Fuel Cell Technology Development
Goals and Key Performance Parameters



Shuttle 
“Active BOP” 

Alkaline
“Active BOP”

PEM

Glenn
Research Center

Johnson
Space Center

Flow-Through Flow-Through

Glenn
Research Center

“Passive BOP”
PEM

Flow-Through

“Passive BOP”
PEM

Glenn
Research Center

Non-Flow-Through

Active Mechanical Component
(pump, active water separator)= Passive Mechanical Component

(injector/ejector, passive water separator)
=

Active coolant 
pump 
(coolant loop 
not shown)

Active coolant 
pump 

(coolant loop 
not shown)

Fuel Cell Technology Progression
… Simpler Balance of Plant to improve reliability



100-W NFT Fuel Cell 
Stack (16 cells, 50 cm2, 

12 V)

1-kW NFT Fuel Cell 
Stack (40 cells, 150 

cm2, 30 V)

1-kW Block I NFT Fuel 
Cell Stack (36 cells, 150 

cm2, 28 V)

3-kW NFT Fuel Cell 
Stack (144 cells, 150 

cm2, 120 V)

1-kW Block II NFT Fuel Cell 
Stack (36 cells, 150 cm2, 28 

V)

100-W SF Electrolysis
Stack (4 cells, 50 cm2)

Fuel Cell and Electrolyzer Hardware Builds



Fuel Cell Technology Development:
Balance Of Plant

1-kW NFT Fuel Cell Stack with attached Fluidic BOP

Goal: efficient packaging into an interface plate to mount 
directly to the fuel cell stack endplate. 

Manifolds, instrumentation, and actuators manage and control:
• flow of reactant gases through the stack interfaces 
• and product water out of the stack.  

The fluidic BOP worked reliably and robustly in the scarab 
demonstrations.

Fuel Cell Power System Architecture



Fuel Cell Technology Development:
Balance Of Plant

Electronic BOP

PC/104 format electronics module includes: 
• On-board processor, 
• Data acquisition/control,
• Communications, 
• Power management, and
• Quad-channel cell voltage monitoring

• measures ±10 mV out of up to 50 Vdc, 
• common-mode voltage of up to 600 Vdc

This unit has been built into an enclosure, and 
integrated with the fuel cell, fluidic balance of plant, 
and batteries for a self-contained test unit.

Fuel Cell Power System Architecture

(Left) Fuel Cell System (includes everything but tanks) 
(Right) Top view showing packaged electronics



100-W RFC

• Bench-top conceptual demonstration
• Fuel cell efficiency of 66.3%; electrolysis efficiency of 71.0%
• Overall round-trip efficiency of 47.1%, with no allowance for parasitic 

power losses

Static Feed 
Electrolysis Stack in 

Test Stand

NFT Fuel Cell Stack 
on Test Stand

Regenerative Fuel Cell Hardware Builds
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Demonstrations Collaborations

2010 Desert RATS 
Demonstration

2012 AMPS Scarab Rover
Range Extender Demonstration Navy LDUUV 

Program
Missile Defense Agency (MDA)
High Energy Laser SBIR Program 

Fuel Cell Technology Infusion

Lessons learned in 

• scale up, 
• sealing, 
• operability, and 
• manufacturing techniques 

have enabled successful follow on work with broad applicability.



Summary and Lessons Learned

• Advanced high voltage NMC cathode, Silicon anode, and flame retardant electrolyte materials 
were developed and scaled-up to fabricate large format battery cells (>30 Ah)

• Non-flow-through fuel cell technology was scaled-up to a 3 kW stack,  and regenerative 
operation was demonstrated with smaller scale hardware (nominally 100 W).

• Our aggressive goals have not yet been met – but progress has been made:
• Demonstrated the scalability of advanced lithium ion battery components, and met 

portions of predicted performance
• Worked through numerous design iterations on the non-flow-through fuel cells such that 

they have competed well for short-duration applications

• These project elements have ended – principal lessons learned include:
• A short project life with modest funding is very challenging to produce a useful product 

from truly new electro-chemical systems
For comparison, NASA’s previous lithium-ion development took about $30M and 
six years (1995 – 2001) to fabricate, test and qualify cells for infusion into flight 
missions, using electrode materials that were known to be scalable

• Building large-scale systems early was beneficial to discover interaction and scaling issues 
for the battery components, but building larger sized fuel cells before learning the lessons 
from smaller sizes cost time and money in the long run
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