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Motivation and objectives  

 Recovery stress obtained during a dimensionally constrained, 

martensitic phase transformation. 

 Where is it used? 

 Fastening and joining 

 Rock splitting 

 Safety/release mechanisms 

 Medical devices (stents) 

 reinforced composites/ concrete confinement  

 Shape setting procedures  

 Jamming loads      

 Goals: Investigate the stress recovery capability of a precipitation 

strengthened, Ni50.3Ti29.7Hf20 (at.%) high temperature SMA in 

uniaxial tension and compression.  
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Ni50.3Ti29.7Hf20 processing and testing  

50mm 

~grain size = 40 mm 

~Ppt. size < 20 nm 

Processing: 

• Induction melted (~60lbs) 

• Homogenized at 1050 °C for 72 h 

• Extruded to rods (~0.4″ in diameter) at 900 °C 

(7:1) 

• Machined to form (dogbone, cylinders…) 

• Aged 550 °C/3hrs/AC (Argon) 

Testing 

• Servohydraulic frame 

• Induction heating 

• Contact extensometer   
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Constant-strain thermal cycling procedure  

epr 

dconstant 

heat cool 
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Tension  

Training I: Isothermal loading within the fully 

reversible region (No plastic deformation)   

T = 25 °C 
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Training I: Isothermal loading within the fully 

reversible region (No plastic deformation)   

Tension  Compression  T = 25 °C 
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Tension  Compression  

Recovery 

Training I: Isothermal loading within the fully 

reversible region (No plastic deformation)   

T = 25 °C 
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Constant-strain thermal cycling: Resultant 

recovery stress 

Tension  Compression  

• Stress buildup on heating  

• Relaxed to zero or to a slightly compressive or tensile 

stress on cooling 

• Thermal expansion contribution, against in tension, with 

in compression  
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Constant-strain thermal cycling: Resultant 

recovery stress (Tension) 
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Constant-strain thermal cycling: Resultant 

recovery stress (Tension) 



www.nasa.gov 

Constant-strain thermal cycling: Resultant 

recovery stress (Tension) 

• Stresses in excess of 1 GPa  

• Stress evolution for pre-strains > 1% (yielding of B2 

phase) 
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Constant-strain thermal cycling: Resultant 

recovery stress (Compression) 
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Constant-strain thermal cycling: Resultant 

recovery stress (Compression) 

• Stresses of ~1.3 GPa  

• Stress evolution for pre-strains < -0.8% (yielding of B2 

phase + retained martensite +…) 
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Constant-strain thermal cycling: Resultant 

recovery stress (Compression) 

D.R. Coughlin et al. / Scripta Materialia 67 (2012) 112–115 
• Stresses of ~1.3 GPa  

• Stress evolution for pre-strains < -0.8% (yielding of B2 

phase + retained martensite +…) 
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Training II: Constant-force thermal cycling 

(No residual strains)  

Tension  
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Training II: Constant-force thermal cycling 

(No residual strains)  

Tension  Compression  
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Training II: Constant-force thermal cycling 

(No residual strains)  

Tension  Compression  

Strain capability 
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Constant-strain thermal cycling: Resultant 

recovery stress 
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Constant-strain thermal cycling: Resultant 

recovery stress 

• Stresses of ~1.0 GPa in tension 
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Constant-strain thermal cycling: Resultant 

recovery stress 

• Stresses in excess of ~1.5 GPa, saturation at ~1.1GPa (in compression) 
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Training I (Isothermal) vs. Training II (Isobaric)  

0 MPa 

400 MPa 

0 

9 

0 MPa 

400 MPa 

0 

9 

Max MRD: 2.25 Max MRD: 8.61 

Isothermal Isobaric 

O. Benafan, et al., Metallurgical and Materials Transactions A, 2012, 

13A, p. 4539–52. 

• Isothermal reorientation  and 

detwinning (R&D) of the 

B19’ is almost unnoticeable. 

• Most R&D occurs on the 1st 

constant-strain cycle. 

 

• Isobaric (R&D) occurs on 

the very first cycle.  

• The majority of 

transformation occurred 

before the 1st constant-strain 

cycle. 
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Training III: Cyclic isothermal deformation    

(load-unload)  

1 sequence  
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Training III: Cyclic isothermal deformation    

(load-unload)  

9 sequences  
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Constant-strain thermal cycling: Resultant 

recovery stress 
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Constant-strain thermal cycling: Resultant 

recovery stress 
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Constant-strain thermal cycling: Resultant 

recovery stress 

• Recovery stress increases with repeated cycles. 

• Approaching 1.1 GPa  
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Switching from tensile to compressive B19’ 

variants  



www.nasa.gov 

Switching from tensile to compressive B19’ 

variants  
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Summary 
 The recovery stresses of a precipitation strengthened, Ni-rich 

Ni50.3Ti29.7Hf20 (at.%) high temperature shape memory alloy were 

evaluated in tension and compression.  

 

 Isothermal training resulted in recovery stresses nearing 1 GPa in 

tension and -1.3 GPa in compression with pre-strains of 1.5 and -

2%, respectively. 

 

 Isobaric training, resulted in recovery stresses nearing 1.1 GPa in 

tension and -1.5 GPa in compression with training stresses of 200 

and -400 MPa, respectively. 

 

 Cycling preloading increased the stress capability  

 

 How does it look in Torsion? 




