Conformal and Spectrally Agile Ultra Wideband Phased Array Antenna for Communication and Sensing

Markus Novak *
Elias Alwan *
Félix Miranda **
John Volakis *

* The Ohio State University
** NASA Glenn Research Center

NASA Goddard Space Flight Center
9/22/15
Outline

State of the Practice & State of the Art

UWB TCDA Concept and Implementation

Digital Beamforming Concept and Implementation

UWB Phased Array Applications
<table>
<thead>
<tr>
<th>Benefits</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graceful degradation</td>
<td>Narrowband/fixed frequency operation</td>
</tr>
<tr>
<td>Mechanical simplicity</td>
<td>Broad beams (few elements)</td>
</tr>
<tr>
<td>Multi-function</td>
<td>Low efficiency (10-35%)</td>
</tr>
<tr>
<td>Agile</td>
<td>Single Access</td>
</tr>
<tr>
<td>Conformal</td>
<td>High cost</td>
</tr>
<tr>
<td>Size, Weight</td>
<td></td>
</tr>
<tr>
<td>Examples of SoP Phased Arrays for Space Applications</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>MESSENGER</td>
<td></td>
</tr>
<tr>
<td>• 2 X-band arrays on board</td>
<td></td>
</tr>
<tr>
<td>• 208 slot elements</td>
<td></td>
</tr>
<tr>
<td>• 1-D scanning to 45°, 4-bit phase shifters</td>
<td></td>
</tr>
<tr>
<td>• 11W RF output, 35% efficiency</td>
<td></td>
</tr>
<tr>
<td>• 4.88kg</td>
<td></td>
</tr>
<tr>
<td>EO-1</td>
<td></td>
</tr>
<tr>
<td>• 64-element X-band array on board</td>
<td></td>
</tr>
<tr>
<td>• 2-D scanning to 60° (4 dB loss)</td>
<td></td>
</tr>
<tr>
<td>• 5W RF output, 11% efficiency</td>
<td></td>
</tr>
<tr>
<td>• 105 Mbps link</td>
<td></td>
</tr>
<tr>
<td>TDRSS</td>
<td></td>
</tr>
<tr>
<td>• 30-element S-band, nonuniform array</td>
<td></td>
</tr>
<tr>
<td>• 12° scanning</td>
<td></td>
</tr>
<tr>
<td>BRAIN (SLS)</td>
<td></td>
</tr>
<tr>
<td>• S-band, very little known</td>
<td></td>
</tr>
<tr>
<td>ORION</td>
<td></td>
</tr>
<tr>
<td>• 13 patch array, S-band</td>
<td></td>
</tr>
</tbody>
</table>

(Top View of Spacecraft)
State of the Art - Trade Off Tables

<table>
<thead>
<tr>
<th>Greater Bandwidth, Scan Angle</th>
<th>(P_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater Electrical Thickness</td>
<td>(k_0 h)</td>
</tr>
</tbody>
</table>

Vivaldi
(Balanced Antipodal Vivaldi Array)

TCDA
(Tightly Coupled Dipole Array)

BAVA
(Balanced Antipodal Vivaldi Array)
Expanded Comparisons

Efficiency
- 0%: EO-1
- 100%: MESSENGER

Bandwidth
- 10%: EO-1
- 10:1: Patch, BAVA, Vivaldi, TCDA

Scanning
- 10°: TDRSS, Patch, Vivaldi, BAVA, MESSENGER, EO-1, TCDA

Data Capacity
- 10Mbps: TDRSS, MESSENGER, EO-1
- >1Gbps: HIMSS, BAVA, TCDA
Arrays for Commercial Timescales seeks versatile array components for S-X band

- Heavily based on analog reconfiguration
- Goals and technology limited to lower frequencies
- No backend integration
- Generally high cost

Benefit/Novelty of our approach:

- Scalable in frequency and size
- Full system integration
- Software-defined operation
Outline

State of the Practice & State of the Art

UWB TCDA Concept and Implementation

Digital Beamforming Concept and Implementation

UWB Phased Array Applications
Frequencies of Interest

- Need for integration of multiple functions to reduce SWaP
- Need access to high data-rate comms and high resolution imaging, across fragmented spectrum
- Should be low cost
Tightly Coupled Dipole Arrays (TCDAs) utilize capacitive coupling between elements to support low frequencies across multiple elements.

[1] Munk’s Current Sheet Array (CSA) introduces inter-digital capacitors to achieve 4:1 BW

[2] Doane adds integrated balun to demonstrate TCDAs with >7:1 BW and $\lambda_{\text{low}}/14$ profile
Expanded Background

[3] Moulder designs loaded TCDA with >10:1 bandwidth and <λ_{low}/18 profile; 14:1 infinite array bandwidth (some loss)

[4] Dual-polarized, lossless TCDA demonstrated with 6:1 BW while scanning to ±60°; 8:1 at broadside

However...

All previous work at <5GHz
Must extend operation to Ku, Ka, and mm-Wave bands
 • Fabrication limitations
 • Cannot be simply scaled

18GHz Proof of Concept

3-layer PCB
8 mil (200um)
feature size
- Can be scaled to higher frequencies

3.5-18.5 GHz
VSWR < 2 (Broadside)
VSWR < 2.6 (scan)

Linear taper to 50 ohm (dashed) approaches nominal 90 ohm (solid) performance

VSWR<2.2 at 70° E-plane
4-17.25GHz (88% of Broadside BW)
What About Even Higher Frequencies?

Previous Works

- **0.5-4 GHz**
 - 4 mil feature size

Ku-TCDA

- At 18 GHz, nowhere near the limit for PCB fabrication!

Ka and Millimeter Wave

- With minimal alteration, this design can scale to Ka and above
 - **3.5-18.5 GHz**
 - 8 mil features
 - **7-37 GHz**
 - 4 mil
 - **9-49 GHz**
 - 3 mil
 - (State of Practice)
 - 3.75 mm (State of Practice)

Array and feeding network are fabricated on Printed Circuit Board (PCB) which can support down to 3 mil (~75um) features.

Groundplane and superstrate are CNC milled.
Scaled Arrays with Real Materials

7–37 GHz Matching

- Broadside
- 45° E-Plane
- 45° H-Plane

9–49 GHz Matching

- Broadside
- 45° E-Plane
- 45° H-Plane

Up to 40 GHz available

Layer Stacks:

- 18 GHz
 - 5 mil Duroid 5880 ($\varepsilon_r=2.2$)
 - 4 mil Polyflon Polyguide ($\varepsilon_r=2.32$)
 - 5 mil Duroid 5880 ($\varepsilon_r=2.2$)

- 37 GHz
 - 5 mil Duroid 5880 ($\varepsilon_r=2.2$)
 - 2 mil Polyflon Polyguide ($\varepsilon_r=2.32$)
 - 5 mil Duroid 5880 ($\varepsilon_r=2.2$)

- 49 GHz
 - 4 mil CuFlon ($\varepsilon_r=2.1$)
 - 2 mil Polyflon Polyguide ($\varepsilon_r=2.32$)
 - 4 mil CuFlon ($\varepsilon_r=2.1$)

3–50 GHz Coverage

Novak, Miranda, Volakis, "Ultra-Wideband Phased Array Antennas for Satellite Communications up to Ku- and Ka-Band", IN SUBMISSION

ElectroScience Laboratory
Ku Array Fabrication in PCB

- Four-layer PCB
- Rogers Duroid 5880
- 14mil total

SMP ports
- Push-to-connect
- 4mm wide

- All elements identical
- Low-cost fabrication
- Fabrication easily scaled
- Frequency scalable
Measurement Setup

NASA GRC Far-Field Range

64 element array with extended groundplane

Scan Patterns: 8.4 GHz, 13GHz, 17.5GHz

Ka to mm-Wave Concept

Nominal band: 24-86GHz
\(\lambda_{hi} = 3.49\text{mm} (~140\text{mil}) \)

- Using Low-Temperature Co-Fired Ceramic (LTCC) or Multilayer Organic laminates (MLO)
- Requires planar or extremely simplified balun for all-in-one fabrication
- Additional matching stages can be inserted below groundplane

Non-optimized broadside VSWR
- Not interested in matching as much as resonance-free band
Outline

State of the Practice & State of the Art

UWB TCDA Concept and Implementation

Digital Beamforming Concept and Implementation

UWB Phased Array Applications
Current SoA Beamformers

Analog Beamformer
- Well understood
- Single Access
- Many phase shifters
 - Expensive
 - Inefficient
- Narrowband

Digital Beamformer
- Multiple Access
- High efficiency
- Many ADC
 - Power Hungry
 - Large area
- Heavy FPGA requirements
New Digital Beamforming Concept

On-Site Coding Digital Beamformer

- Single ADC serves multiple elements
- Orthogonal codes preserve individual element signals
- Multiple Access
- High efficiency
- Reduced ADC and FPGA
- Broadband
Utilizing on-site coding in analog signal path, we realize hardware-reduced digital beamforming:

- Up to 10x reduction in ADCs
- Wideband, multiple beam operation
- Fast scanning
- Software-defined operation

• 4-channel system has been demonstrated at 2GHz
• Demonstration up to 12GHz being prepared
Digital Beamforming up to 10 GHz

- Columns of 8 elements routed to power combiners
- 4 channels routed, maximum 3 measured due to equipment malfunction
- Demonstrate azimuthal scanning in H-Plane
- Demonstrate Direction-of-Arrival estimation from 2 channels
- Receive and process separate signals at 6 and 10 GHz
- Beam patterns being compared against previous measurements

Measurements conducted 9/14 and 9/15, results being processed.
Outline

State of the Practice & State of the Art

UWB TCDA Concept and Implementation

Digital Beamforming Concept and Implementation

UWB Phased Array Applications
UWB Phased Array Applications

Smart Relays

Reduce end-to-end link burden

Software-Defined Radio

- Spectral agility
- Future-proof
- Coding & waveform flexibility
- Multi-Gbps link capability

Planetary Exploration

SmallSat/CubeSat

- Low cost exploration
- Potentially distributed architecture for communication and sensing

Summary

- We have an ultra-wideband antenna which is:
 - Low cost, low profile, low weight
 - Scalable in size and frequency
- Paired with novel digital beamforming architecture
 - Multiple access and simultaneous multi-beam scanning
 - Up to 10x reduction in ADC count (thus power and size)
- Both fabricated and measured

Future Work

- Fabricate and measure 20-80 GHz array
- Build an integrated, RF–digital, mm-Wave phased array
Mr. Markus Novak work is supported by the NASA Space Technology Research Fellowship (NSTRF) Program under NASA Grant: # NNX13AL48H.