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What causes the time dependent strength degradation in SiC/SiC

composites at intermediate temperatures (700 – 900 °C)?

Hi-NicalonTM composite

8 plies thick

Tow spacing: 17 epi

500 filaments per tow

R = 7mm

f = 0.1965

Stress versus time-to-failure of Hi-NicalonTM composite specimens at intermediate 

temperatures from Morscher, Hurst and Brewer (2000). 
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Time Dependent Strength Degradation Mechanisms

Theory #1: Oxidation of BN fiber coating causes fusing of fibers to one another and to 

matrix resulting in embrittled composite. 

3

• Fusing causes local load sharing (LLS): Fibers adjacent 

to failed fibers are overloaded, causing a cascading of 

fiber failures and composite failure.

• Embrittlement is time dependent since extent of the 

cross-section that is fused increases with time.

2322
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2 NOBOBN 

glassteborosilicaSiOOB  232

Heredia, et al. (1995)

Morscher (1997)

Glime and Cawley (1998)

Morscher, Hurst and Brewer (2000)

Morscher and Cawley (2002).

Micrograph of SiC/SiC composite showing oxidized BN 

fiber coating. Courtesy of Ram Bhatt (NASA/GRC).
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Time Dependent Strength Degradation Mechanisms

Theory #2: Oxidation of SiC fiber results in tensile stress in fiber.

4

• Molar volume of silica is greater than SiC causing 

compression in oxide and tension in fiber.

• Tensile stress in fiber increases with time since 

oxide thickness grows with time.

• Results in an apparent loss in fiber strength over 

time.

2222 COSiOOSiC 
Xu, Zok and McMeeking (2014)

Hay (2012).

SiC SiO2

2O

SiC fiber

Fiber with oxide scale

SiC matrix

Matrix crack 2O
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Time Dependent Strength Degradation Mechanisms

Theory #3: SiC fiber strength is intrinsically time dependent due to slow crack 

growth in fibers. 

Rupture time versus stress for Hi-NicalonTM single filaments 

and tows at 800 °C. Data from Gauthier and Lamon (2009).

Forio, Lavaire and Lamon (2004)

Gauthier, Pailler, Lamon and Pailler (2009)

Gauthier and Lamon (2009).

Some evidence of slow crack growth 

on fiber fracture surfaces

At intermediate temperatures, tows and 

single fibers have a stress vs time-to-

failure relationship that follows
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Objective

• Investigate the cause of the time-to-failure vs. stress relationship in SiC/SiC

composites with a BN fiber coating at intermediate temperatures.

Approach

• Develop a progressive failure analysis routine (based on Theory #3) and 

apply it to simulate the composite stress rupture tests that produced the 

results shown on the first slide. The ability to simulate the stress vs. time-to-

failure behavior will judge its validity.

Assumptions

• Composite failure initiates at a matrix crack.

• The progression of fiber failure occurs under global load sharing (GLS).
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Fiber Failure Model (Relationship between Pf –  – t)

Time-to-failure versus applied stress for Hi-NicalonTM single fibers (gold circles) 

and tows (black squares) at 800 °C from Gauthier and Lamon (2009).
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Rearrange the previous expression to get an expression for 

the Probability of Failure

Length effect
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Progressive Failure Analysis (PFA) Routine
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Converge?

yes

no

• Iterate between two equations

Global Load Sharing (GLS) Model

• Numerically similar to Lara Curzio (1997)

• Based on Global Load Sharing (GLS) Model

Prob. of Survival

Force Equilibrium
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PFA Simulation of Tow Tensile Tests from Gauthier and Lamon (2009)
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Analysis of Composite Systems

Matrix crack

Assumption: Composite failure initiates at a 

matrix crack.

Aveston, Cooper and Kelly (1971)

Curtin (1991)

Curtin (1994)

Curtin, Ahn and Takeda (1998)

Thouless and Evans (1988)
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Analysis of Composite Systems
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Average Pull-out stress

Average Pull-out length*h

* Expression for average pull-out length 

obtained from Thouless and Evans (1988)
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Crack Spacing and Shear Stress Calculations

Shear stress can be estimated from crack density 

measurements when cracks are saturated.
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composite from Morscher and Cawley (2002)
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Crack spacing and the ratio l/x versus composite stress. Crack 

spacing from crack density data from Morscher and Cawley (2002).
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If matrix cracks are close enough, fiber failures in 

nearby matrix cracks affect the force equilibrium 

equation in a central matrix crack plane
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Analysis of Composite Systems
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Results: Each line represents a series 

of PFA solutions

Note: Marshall and Evans (1985) measured a shear 

stress value in other SiC fiber-reinforced ceramic 

matrix composites in the range of 2 - 2.5 MPa.
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Discussion and Conclusions

• The time dependent strength of Hi-NicalonTM fiber reinforced composites 

has been shown to be largely due to the intrinsic time dependent strength 

of the fibers. Other mechanisms (e.g. fusing and embrittlement) may have 

a small effect at later times.

• Best agreement with the measured time-to-failure versus composite 

stress was obtained with progressive failure analyses solutions using 

multiple matrix crack formulation and with a combination of shear stress 

values between 3.5 – 5 MPa and fiber damage values of < 9%.

• If slow crack growth in fibers requires oxidation of inter-granular interface, 

what is the source of oxygen? Does it flow from the surrounding 

atmosphere down a matrix crack or is there enough present in the 

constituents? SiC fibers? BN fiber coating?
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