Compatibility of the Radio Frequency Mass Gauge with Composite Tanks

Greg Zimmerli, NASA Glenn Research Center, Cleveland, OH
Carl Mueller, Vencore Inc., Cleveland, OH

2015 JANNAF Joint Propulsion Meeting
Nashville, TN

Approved for public release
Outline

- Cryogenic Fluid Management Technologies for Space Applications
 - Motivation for this work

- Low-g propellant quantity gauging
 - Radio Frequency Mass Gauge (RFMG)
 - Principle of operation
 - RFMG operational requirements

- Graphite/Epoxy composite electrical tests
 - RF impedance analyzer
 - Waveguide reflectivity
 - Composite box; EMI testing

- RF modal testing in the Boeing 2.4m composite tank

- Summary & Conclusions
Space Cryo Fluid Management Technologies

Thermal Control
- Insulation (launch environments and in-space)
- Vapor or actively cooled shields
- Low conductivity/ cooled support structure

Pressurization
- Helium
- Autogenous

Cryogenic Tank Details

Pressure Control
- Zero-g venting (thermodynamic vent and heat exchanger)

Liquid Acquisition
- Capillary retention devices

Propellant Gauging
- Settled propellant
- Inventory (Bookkeeping)
- Pressure-volume-temperature (PVT)
- High accuracy micro-g techniques

Propellant Transfer
- To propellant feedline or receiver tank
- Chill-down/no-vent fill

Composite tanks and structures

This work
Low-g propellant gauging: State of the art

- SOA for cryo’s is settling and bookkeeping
- SOA for storables is thermal method, PVT, and bookkeeping

Several low-gravity cryo-propellant gauges have been developed and tested

- Compression Mass Gauge (SwRI)
- Optical Mass Gauge (ATG, Inc.)
- Pressure-Volume-Temperature (NASA)
- Radio Frequency Mass Gauge (NASA)

The focus of this talk is on the Radio Frequency Mass Gauge, and its compatibility with composite tanks
Radio Frequency Mass Gauge (RFMG)

Principle of operation:

- RF simulation software can be used to predict tank RF modes
- The effect of a dielectric fluid can also be modeled \((c \rightarrow c/n)\)
- The RFMG compares the measured RF mode frequencies with a database of simulations and finds a best match at some fill level
- RFMG has been tested with liquid hydrogen, oxygen, methane
 - Low-g aircraft testing with a simulant fluid, FC-77
RF Mass Gauge requirements

For successful operation, the RFMG requires:

- Accurate model of the tank geometry and internal hardware
- Conductive tank walls to produce good quality tank modes**
- Good coupling between an antenna (or two) and the tank
 - The antenna acts as the source and receiver of the RF signal
- RF signal analyzer
- RF simulations
- Computer/algorithm for analyzing RF data

**Mode quality factor

\[Q = \frac{f}{\Delta f} \]

Want \(Q \approx 100 \) or better for an accurate mode frequency measurement
Mode quality factor

\[Q_{\text{measured}} = \frac{f}{\Delta f} \]

\[Q_{\text{theory}} \approx \frac{\mu}{\mu_c} \left(\frac{V}{S \delta} \right) \times \text{(geometrical factor of order 1)} \]

Where \(\mu/\mu_c \) is the relative permeability, \(S = \) surface area, \(V = \) tank volume

\[\delta = \sqrt{\frac{2}{\mu_c \omega \sigma}} \]

is the penetration depth of the EM field

- High conductivity walls (metal) lead to high Q values
- What about a tank made from graphite/epoxy composite material?
Graphite/epoxy composite

• Graphite/epoxy composite has anisotropic conductivity
 - In plane resistivity as low as 2.5×10^{-3} ohm-cm
 - Out of plane resistivity ranges from 10 – 1,000 ohm-cm

• Graphite fibers are conductors, but the effect of the fiber mesh on an RF tank spectrum was uncertain

• RF modes produce surface currents on inner tank walls, where the energy is dissipated
 - What is the effect of graphite/epoxy composite on tank Q-factor?

Surface current density (perfect conductor)

Interior E field density
RF impedance analyzer measurements

- Acquired samples of 8552 IM7 graphite epoxy composite (16 ply, ~1 mm thick)
- Sputtered gold electrodes on each side
- Measured impedance normal to the sample thickness using an Agilent 16453A impedance analyzer from 10 – 1000 MHz
- Calibrated using alumina standard

\[\rho = \frac{RA}{L} = \frac{(1.2 \Omega)(0.38 \text{ cm}^2)}{0.096 \text{ cm}} = 4.8 \Omega \text{ cm} \]

Calculated Q factor for a 2m tank: \(Q_{\text{calc}} = 67 \)

Expect higher value since this measurement is normal to the sample thickness
Waveguide measurements

- 8552 IM7 samples inserted in a WR430 waveguide (10.9 x 5.5 cm)
- Reflected and transmitted signals measured using an Agilent E8361A network analyzer
- Signal propagates in the TE10 mode: Electric field is parallel to the sample
Waveguide measurements

- Return loss is near 0 dB, which indicates a good conductor
- Transmission loss is high but measureable
- Data suggests a composite tank would have good RF modes
Composite cube test

- Constructed a 1m³ box from 8552 IM7 graphite-epoxy panels
- Demonstrated that the composite box supported RF modes
- Measured quality factor in the range 100 < Q < 200
- Used the box to conduct EMI radiated electric field test
Radiated electric field test from composite cube

- Radiated electric field measured using EMI lab antenna
- 1 mW RF signal was used to excite a single mode at 230 MHz during this test
- Some RF leakage is expected based on the electrical penetration length
- Similar measurement using aluminum box showed 20 dB lower field levels
- Lower radiated field levels could be achieved with a smaller RF signal. Aluminized MLI would also reduce emissions.

![Graph showing measured radiated field and ISS limit line](image-url)

- Measured radiated field
- ISS limit line (SSP 30237 Rev F)
Boeing 2.4m composite tank

- 2.4 m diameter graphite fiber composite tank built by Boeing
- Liquid hydrogen testing conducted at NASA MSFC
- Precursor to a 5.5m composite tank

Image credit: Boeing
RF modal testing of the 2.4m composite tank

- Aluminum lid and T-bar structure fabricated to conduct RF modal test
- 30 cm dipole and 5 cm diameter loop antenna was used to measure the RF modes
- Several floor jacks used to press-fit the lid to the bottom port
RF modal testing of the 2.4m composite tank

- RF modal test conducted after cryogenic testing
- Excellent RF modal spectrum observed
- Measured $440 < Q < 2,800$
RF modal testing of the 2.4m composite tank

Converting measured Q to resistivity:

$$Q = \frac{\mu}{\mu_c} \left(\frac{V}{S\delta} \right) \times (\text{Geometrical factor}) = 1,500$$

$$\delta = \sqrt{\frac{2}{\mu_c \omega \sigma}}$$

Yields $\rho = 0.06$ ohm-cm

- Somewhat higher than published values for graphite-epoxy composites, but significantly lower than our 4.8 ohm-cm normal-to-plane impedance measurement (as expected)
- Electrical bond between press-fit aluminum lid and tank may lower the Q-factor somewhat
- Larger tanks would have even higher Q’s
- Cooling to low temperatures is not expected to have much impact since $\rho (293 \text{ K})/\rho (20 \text{ K}) \sim 1$
Conclusions

• Graphite-epoxy composite tanks are compatible with the Radio Frequency Mass Gauge sensor

• RF mode quality in the 2.4 m composite tank is very good

• Measured Q ~ 1,500 in the 2.4m is consistent with expectations based on RF impedance tests of smaller samples

• Very high Q tanks, such as large aluminum tanks, can make RF modal measurements difficult (narrow peaks), so in this respect composites offer an added benefit
Acknowledgements

• This work was supported by NASA’s Space Technology Mission Directorate, through the Cryogenic Fluid Management and eCryo programs

• Special thanks to Marius Asipauskas, Scott Metzger, Jim Wagner and Mike Herlacher at NASA GRC for electrical, mechanical, and computational support

• Special thanks to Justin Jackson at MSFC for helping to enable the RF modal measurements on the Boeing 2.4 m composite tank