SPACE COMMUNICATIONS AND NAVIGATION

SMC: SCENIC MODEL CONTROL
Presented by Priyanka Srivastava and Jeff Kraus
Summer Intern Mentor: Robert Murawski, Ph.D.
NASA Glenn Research Center Project Manager: Bertsel Golden, Jr.
SCENIC MODEL CONTROL
Presentation Agenda

- Motivation
 - SCaN
 - SCENIC
 - Model Based Systems Engineering

- Overview of Project SMC

- Modeling
 - About MagicDraw
 - Structural Diagram
 - Functionality
 - Internal Architectural Diagram

- Simulation
 - Interaction between components
 - User Interface inside MagicDraw
Space Communication and Navigation (SCaN)

SCaN manages and directs:

- The ground-based facilities and user services provided by the Near Earth Network (NEN) and Deep Space Network (DSN);
- The ground- and space-based facilities and user services provided by the TDRSS Space Network (SN)
SCaN future objectives:

- Integration of existing NASA SCaN assets, building a single NASA-wide space communications and navigation network;
- Implementation of data communication protocols for Space Exploration missions that are internationally interoperable.
- Meets the future needs and commitments to provide space communications and navigation services to missions.
SCENIC Mission Statement: Provide a strategic center for education, networks, integration, and communications to collaboratively define and address the needs of future NASA communications.

Modeling and Analysis Goals

- Development of current SCaN Network models that are expandable, verifying proposed future architectures;
- Capacity Modeling of the existing and future SCaN Networks;
- Simulation of the network communication and navigation infrastructure space and ground networks.
Why Model-Based Systems Engineering?

- Enables system-level model capture
 - Formal, accurate, authoritative single source
 - Contains elements, relationships, interactions
 - Multiple compatible views, e.g. physical/functional
 - Requirements verification and traceability

- Enables integration of models and simulations
 - Connect system-level model to analytical tools (STK, OPNET, MATLAB etc.)
 - Execute dynamic simulation of end-to-end mission
 - Identify failure to satisfy requirements
 - Accommodates re-evaluation when design changes occur
Project Mission:
To develop a SCaN network model with its architectural elements in an evolutionary and expandable format. SMC is a framework utilizing a modular approach with MagicDraw as the primary User Interface Software.

SMC Task Objectives:
- Model SCaN ground networks and desired user missions in SysML
- Perform capacity modeling and coverage analysis of SCaN Network assets based on SCaN Mission Loading.
- Integrate the developed tools and wrappers thru a custom MagicDraw User Interface.
- Development of a Control Module which facilitates transfer of model information and generated reports via custom XML communication schema.
SMC Capacity Modeling Tools

End Products of SMC:
- Optimized User Mission Schedule for modeled mission set generated by STK Scheduler
- Link Budget Reports between satellites and a Ground Stations using STK
- Network performance reports between Satellites and Mission Operation Centers (MOC) using OPNET
Modeling SMC

SIP Project questions:

– How does one integrate the NEN and SN ground station information within a single database?

– How does one seamlessly integrate simulation tools for the purpose of performing future capacity modeling?

– How do changes in the configuration of SCaN networks and spacecraft missions impact future system performance and requirements?
Selected MBSE tool: MagicDraw by No Magic Inc.
- Present a high level architectural framework of the system components
- Act as the User Interface to initiate processes inside the system
- Integrate databases and software such as STK and OPNET via a custom developed plugin.
SMC Structure

Motivation
- SCaN
- SCENIC
- Model Based Systems Engineering

Overview of SMC Modeling
- About MagicDraw
- Structural Diagram
- Functionality
- Internal Architectural Diagram

Simulation
- Interaction between components
- User Interface inside MagicDraw
Functionality of SMC

Motivation
- SCaN
- SCENIC
- Model Based Systems Engineering

Overview of SMC

Modeling
- About MagicDraw
- Structural Diagram
- Functionality
- Internal Architectural Diagram

Simulation
- Interaction between components
- User Interface inside MagicDraw

About MagicDraw (developed using Java And Eclipse IDE)

Web hub to interface application tools

Simulation tools
Motivation
- SCaN
- SCENIC
- Model Based Systems Engineering

Overview of SMC

Modeling
- About MagicDraw
- Structural Diagram
- Functionality
- Internal Architectural Diagram

Simulation
- Interaction between components
- User Interface inside MagicDraw

SMC Block Diagram as viewed by the SMC project user
Motivation
- SCaN
- SCENIC
- Model Based Systems Engineering

Overview of SMC

Modeling
- About MagicDraw
- Structural Diagram
- Functionality
- Internal Architectural Diagram

Simulation
- Interaction between components
- User Interface inside MagicDraw

IBD captures the structure, behaviors and interactions between the elements
SMC Element Interaction

Motivation
- SCaN
- SCENIC
- Model Based Systems Engineering

Overview of SMC Modeling
- About MagicDraw
- Structural Diagram
- Functionality
- Internal Architectural Diagram

Simulation
- Interaction between components
- User Interface inside MagicDraw

User Interfaces for data access

Plugins and Interfaces

Analytical Tools

OPNET

STK

MAGICDRAW INTERFACE

PLUGIN
- Pulls data from model
- Presents real-time updates
- User toggled simulation components
- Receives generated reports

CONTROL MODULE WEB INTERFACE

ESCMM Satellite Selection UI
Motivation
- SCaN
- SCENIC
- Model Based Systems Engineering

Overview of SMC Modeling
- About MagicDraw
- Structural Diagram
- Functionality
- Internal Architectural Diagram

Simulation
- Interaction between components
- User Interface inside MagicDraw

AGI’s Systems Tool Kit (STK) simulates:
- Orbital Dynamics
- Link Access
- Propagation Delay
- Bit Error Rate
- Noise Interference

Link Budget Calculations and other reports sent to OPNET via XML for further Analysis
Motivation
- SCaN
- SCENIC
- Model Based Systems Engineering

Overview of SMC

Modeling
- About MagicDraw
- Structural Diagram
- Functionality
- Internal Architectural Diagram

Simulation
- Interaction between components
- User Interface inside MagicDraw

OPNET Radio Transceiver Pipeline

- Builds network simulation model
- Generates network model based on ground network and mission simulation parameters
- Schedules tasks provided by STK to simulate networking between modeled objects
- Modified OPNET radio transceiver pipeline to utilize link budget reports from STK, rather than OPNET calculations, for propagation delay and bit error rate (BER) parameters
Questions / Comments / Snide Remarks?

THANK YOU IAC