Introduction-Synergy of Students

SCENIC MODEL CONTROL
Presentation Agenda

- Motivation
 - SCaN
 - SCENIC
 - Model Based Systems Engineering
- Overview of Project SMC
- Modeling
 - About MagicDraw
 - Structural Diagram
 - Functionality
 - Internal Architectural Diagram
- Simulation
 - Interaction between components
 - User Interface inside MagicDraw
Space Communication and Navigation (SCaN)

SCaN manages and directs:
- The ground-based facilities and user services provided by the Near Earth Network (NEN) and Deep Space Network (DSN);
- The ground- and space-based facilities and user services provided by the TDRSS Space Network (SN)
Space Communications and Navigation (SCaN) (continued)

SCaN future objectives:

• Integration of existing NASA SCaN assets, building a single NASA-wide space communications and navigation network;
• Implementation of data communication protocols for Space Exploration missions that are internationally interoperable.
• Meets the future needs and commitments to provide space communications and navigation services to missions.
SCENIC Mission Statement: Provide a strategic center for education, networks, integration, and communications to collaboratively define and address the needs of future NASA communications.

Modeling and Analysis Goals

- Development of current SCaN Network models that are expandable, verifying proposed future architectures;
- Capacity Modeling of the existing and future SCaN Networks;
- Simulation of the network communication and navigation infrastructure space and ground networks.
Why Model-Based Systems Engineering?

- Enables system-level model capture
 - Formal, accurate, authoritative single source
 - Contains elements, relationships, interactions
 - Multiple compatible views, e.g. physical/functional
 - Requirements verification and traceability

- Enables integration of models and simulations
 - Connect system-level model to analytical tools (STK, OPNET, MATLAB etc.)
 - Execute dynamic simulation of end-to-end mission
 - Identify failure to satisfy requirements
 - Accommodates re-evaluation when design changes occur
SCENIC Model Control (SMC)

Project Mission:
To develop a SCaN network model with its architectural elements in an evolutionary and expandable format. SMC is a framework utilizing a modular approach with MagicDraw as the primary User Interface Software.

SMC Task Objectives:
• Model SCaN ground networks and desired user missions in SysML
• Perform capacity modeling and coverage analysis of SCaN Network assets based on SCaN Mission Loading.
• Integrate the developed tools and wrappers thru a custom MagicDraw User Interface.
• Development of a Control Module which facilitates transfer of model information and generated reports via custom XML communication schema.
SMC Capacity Modeling Tools

End Products of SMC:

- Optimized User Mission Schedule for modeled mission set generated by STK Scheduler
- Link Budget Reports between satellites and a Ground Stations using STK
- Network performance reports between Satellites and Mission Operation Centers (MOC) using OPNET
SIP Project questions:

– How does one integrate the NEN and SN ground station information within a single database?

– How does one seamlessly integrate simulation tools for the purpose of performing future capacity modeling?

– How do changes in the configuration of SCaN networks and spacecraft missions impact future system performance and requirements?
Selected MBSE tool: MagicDraw by No Magic Inc.
- Present a high level architectural framework of the system components
- Act as the User Interface to initiate processes inside the system
- Integrate databases and software such as STK and OPNET via a custom developed plugin.
SMC Structure

Motivation
- SCaN
- SCENIC
- Model Based Systems Engineering

Overview of SMC

Modeling
- About MagicDraw
- Structural Diagram
- Functionality
- Internal Architectural Diagram

Simulation
- Interaction between components
- User Interface inside MagicDraw

Diagram

Simulation Data Sources
Custom Data Wrappers
Simulation User Interface
Simulation Automation Backend
Simulation Tool Wrappers
COTS / GOTS Simulation Tools
Functionality of SMC

Motivation
- SCaN
- SCENIC
- Model Based Systems Engineering

Overview of SMC

Modeling
- About MagicDraw
- Structural Diagram
- Functionality
- Internal Architectural Diagram

Simulation
- Interaction between components
- User Interface inside MagicDraw

MagicDraw Plugin
(dveloped using Java And Eclipse IDE)

Web hub to interface application tools

Simulation tools
Block Definition Diagram

SMC Block Diagram as viewed by the SMC project user
Motivation

- SCaN
- SCENIC
- Model Based Systems Engineering

Overview of SMC

Modeling

- About MagicDraw
- Structural Diagram
- Functionality
- Internal Architectural Diagram

Simulation

- Interaction between components
- User Interface inside MagicDraw

Internal Block Diagram

IBD captures the structure, behaviors and interactions between the elements
SMC Element Interaction

Motivation
- SCaN
- SCENIC
- Model Based Systems Engineering

Overview of SMC

Modeling
- About MagicDraw
- Structural Diagram
- Functionality
- Internal Architectural Diagram

Simulation
- Interaction between components
- User Interface inside MagicDraw

User Interfaces for data access

Plugins and Interfaces

Analytical Tools

- OPNET
- STK

MAGICDRAW INTERFACE

PLUGINS
- Pulls data from model
- Presents real-time updates
- User toggled simulation components
- Receives generated reports

ESCMM Satellite Selection UI

CONTROL MODULE WEB INTERFACE
AGI’s Systems Tool Kit (STK) simulates:

Orbital Dynamics | Link Access | Propagation Delay | Bit Error Rate | Noise Interference

Link Budget Calculations and other reports sent to OPNET via XML for further Analysis
OPNET Radio Transceiver Pipeline

- Builds network simulation model
- Generates network model based on ground network and mission simulation parameters
- Schedules tasks provided by STK to simulate networking between modeled objects
- Modified OPNET radio transceiver pipeline to utilize link budget reports from STK, rather than OPNET calculations, for propagation delay and bit error rate (BER) parameters
THANK YOU IAC