Design of an Object-oriented Turbomachinery Analysis Code

Initial Results

Scott Jones, NASA Glenn Research Center
Presentation Outline

- justification - why write yet another turbomachinery code?

- approach - what does an object-oriented turbomachinery code look like?

- results - how do I know the code works?
Justification

- there is still a need for 2-D design/analysis
- codes tend to be focused on one aspect

- specific, individual codes may have undesirable features

ERROR: SOURCE CODE NOT FOUND

The USER GUIDE to UNHELPFUL USER GUIDES

Wasn’t there someone who used to run this?
Problem Description and Assumptions

CODE REQUIREMENTS:
OTAC is applicable for
- compressors and turbines
- design and analysis
- meanline and streamline
- axial, centrifugal/radial, and mixed

CODE ASSUMPTIONS:
flow going through a blade row in an annulus from station 1 to station 2:
- steady-state, throughput flow
- circumferentially uniform
- adiabatic, simple radial equilibrium
- no change in mass flow rate
- no streamline curvature

ADDITIONAL GOALS:
modular (loss models), good thermo, simulate unconventional architectures
OTAC Written in NPSS Environment

- allows re-use of Numerical Propulsion System Simulation objects
- model structure similar to NPSS engine cycle model

3-Stream OTAC Example Model

DataViewer Object

Element object
- flow connection
- mechanical connection
FlowStation Object Extended from NPSS

NPSS 1-D FlowStation (4 inputs):
- \(h_t, P_t \)
- MN
- \(\dot{m} \)

OTAC FlowStation (7+1 inputs):
- \(h_t, P_t \)
- MN, \(\alpha, \phi \)
- \(\dot{m} \)
- radius

+ relative frame angular speed: \(\omega \)
Streamtube in an Annulus

- **Machine Area**
- **Flow Area**
- **Flow Mean Radius**
- **Machine Mean Radius**

Numbers 1 and 2 indicate the positions along the streamtube.
Multiple Streamtubes
the **BladeRow** represents the entire blade row and contains its own “sub-objects”

each **BladeSegment** tracks a streamtube through a section of blade

each **FlowStation** contains the entire state of the fluid at its particular location
Independents represent variables the NPSS solver is allowed to vary

Dependents represent equations or conditions the NPSS solver must satisfy

- **FlowStation Independents**
 - \dot{m}_2
 - h_{t2}
 - P_{t2}
 - α_2
 - radius_2
 - MN_2

- **BladeRow Dependents**
 - Continuity
 - Conservation of energy/Euler
 - Non-ideal process loss
 - Non-ideal process turning
 - Geometry constraint (radius)
 - Geometry constraint (area)
 - $\dot{m}_{m2} = \dot{m}_{m1}$
 - $h_{t2} - h_{t1} = \omega (r_2 V_\theta 2 - r_1 V_\theta 1)$
 - $P_{t2} = P_{t2\text{ideal}} - \Delta P_t$
 - $\beta_2 = \beta_{\text{blade}} + \delta$
 - $\text{radius}_2 = r_{\text{machine}}$
 - $A_{\text{flow2}} = A_{\text{machine}} - A_{\text{blockages}}$
Empirical Effects

- **BladeRows** contain **Sockets**, placeholders to insert code that calculates a certain variable such as non-dimensional pressure loss

 - profile loss method “a”
 - deviation “c”
 - blockage method “a”

- this allows for considerable versatility in applying losses to the simulation; other benefits include testing and proprietary considerations
Results

- comparison against other codes and calculations

- investigation to determine even if the NPSS solver could reliably converge with matrix sizes over 50x50

- more test cases have been run than shown here
Test Cases and Results

- comparison of OTAC and HT0300 for a compressor IGV plus rotor, streamline, losses input

Program HT0300, Richard M. Hearsey, 2011
Test Cases and Results

- comparison of OTAC and Ainley-Mathieson single stage turbine calculation, meanline, losses calculated

Test Cases and Results

- comparison of OTAC and HT0300 5-stage turbine calculation, streamline, losses calculated using Ainley-Mathieson with Kacker/Okapuu modifications

Program HT0300, Richard M. Hearsey, 2011
Test Cases and Results

- OTAC analysis of 5-stage turbine (from previous slide), streamline
Test Cases and Results

- OTAC analysis of 2-stage compressor, streamline, losses calculated using Aungier correlations

Test Cases and Results

• comparison of OTAC and Japikse & Baines centrifugal compressor calculation, meanline, losses input

<table>
<thead>
<tr>
<th>impeller exit</th>
<th>OTAC</th>
<th>Japikse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt, psi</td>
<td>31.17</td>
<td>31.17</td>
</tr>
<tr>
<td>Tt, R</td>
<td>653.5</td>
<td>653.7</td>
</tr>
<tr>
<td>Vm, ft/s</td>
<td>342.4</td>
<td>342.4</td>
</tr>
<tr>
<td>Vθ, ft/s</td>
<td>843.8</td>
<td>843.8</td>
</tr>
<tr>
<td>β flow, degrees</td>
<td>19.04</td>
<td>-19.04</td>
</tr>
<tr>
<td>α flow, degrees</td>
<td>67.91</td>
<td>67.91</td>
</tr>
<tr>
<td>slip factor</td>
<td>0.8772</td>
<td>0.8772</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>diffuser exit</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt, psi</td>
<td>30.04</td>
<td>30.04</td>
</tr>
<tr>
<td>Ps, psi</td>
<td>26.71</td>
<td>26.64</td>
</tr>
<tr>
<td>α flow, deg</td>
<td>55.99</td>
<td>50.94</td>
</tr>
</tbody>
</table>

Introduction to Turbomachinery, David Japikse and Nicholas C. Baines, 1994
Summary

• OTAC proof of concept verified – correct results for compressors, turbines, axial, centrifugal, meanline, streamline, design and analysis

• extensive work on turbine loss models: Ainley-Mathieson, Kacker-Okappu, Dunham-Came, Moustapha-Kacker-Tremblay

• compressor loss model based on Aungier’s method implemented

• further work includes additional loss models, improved logic for choked flow operation
Meanline BladeRow Equation Set

continuity

\[\dot{m}_2 = \dot{m}_1 \]

conservation of energy/Euler

\[h_{t2} - h_{t1} = \omega (r_2 V_{\theta 2} - r_1 V_{\theta 1}) \]

non-ideal process loss

\[P_{t2} = P_{t2_{\text{ideal}}} - \Delta P_t \]

non-ideal process turning

\[\beta_2 = \beta_{\text{blade}} + \delta \]

geometry constraint (radius)

\[r_2 = r_{\text{machine}} \]

geometry constraint (area)

\[A_{\text{flow}2} = A_{\text{machine}} - A_{\text{blockages}} \]

Note: at design, \(\beta_{\text{blade}} \) and \(A_{\text{machine}} \) may be input (direct-design) or varied to produce specific performance (indirect-design).
Streamline BladeRow Equation Set

- **Continuity**: \(n \) for \(n \) streams
- **Energy/Euler**: \(n \) for \(n \) streams
- **Loss Condition**: \(n \) for \(n \) streams
- **Flow Follows Blade**: \(n \) for \(n \) streams
- **Geometry Constraint**: \(n-1 \) for \(n-1 \) streams
- **Geometry Constraint**: \(1 \) for \(1 \) stream
- **Spanwise Eq.**: \(n-1 \) for \(n-1 \) streams
- **Geometry Constraint**: \(1 \) for \(1 \) stream

\[
\begin{align*}
 \dot{m}_{m2_i} &= \dot{m}_{m1_i} \\
 h_{t2_i} - h_{t1_i} &= \omega (r_{2i} V_{\theta 2i} - r_{1i} V_{\theta 1i}) \\
 p_{t2_i} &= p_{t2\text{_ideal}i} - \Delta p_{t_i} \\
 \beta_{2i} &= \beta_{\text{blade}i} + \delta_i \\
 r_{2\text{_inner}i+1} &= r_{2\text{_outer}i} \\
 r_{2\text{_sum}} &= r_{\text{machine}} \\
 \frac{1}{\rho_i} \frac{\Delta p_i}{\Delta r_i} &= \frac{V_{\theta i}^2}{r_i} \\
 A_{\text{flow2_sum}} &= A_{\text{machine}} - A_{\text{blockages}}
\end{align*}
\]

- \(n \) = number of streams
- \(i \) = stream number, 1 to \(n \)
- \(\text{sum} \) = aggregate value
BladeSegment Object

responsible for differences between certain flow states
entrance
exit - actual
exit - ideal h_t
exit - ideal P_t
multiple BladeSegments allow for radial variation of flow properties
BladeRow Object

responsible for differences between BladeSegments

holds blade row specific variables: annulus areas, number of blades, blade angles, power, etc.
Slide Master