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ABSTRACT 
 

A smart coating system, based on pH sensitive microcontainers (microparticles and microcapsules) has 
been developed. Various corrosion inhibitors have been encapsulated and incorporated into commercial 
and formulated coatings to test the functionality imparted on the coating by the incorporation of the 
inhibitor microcontainers. Coated carbon steel and aluminum alloy panels were tested using salt 
immersion, salt fog, and coastal atmospheric exposure conditions. This paper provides the details on 
coating sample preparation, evaluation methods, as well as test results of the inhibiting function of smart 
coatings. 
 

INTRODUCTION 
 
The development of a smart multifunctional corrosion-protective coating system, based on a pH-sensitive 
delivery system, has evolved significantly over the last few years1-4. This effort has resulted in a coating 
with pH-sensitive microcontainers that can incorporate corrosion indicators, corrosion inhibitors, and self-
healing agents to achieve the desired functionalities of early corrosion detection, controlled release of 
corrosion inhibitor(s), and self-healing of mechanical damage. One important function of the smart 
coatings is corrosion protection using inhibitor delivery systems. This effort is driven by the need for 
environmental compliance in protective coating without sacrificing performance.  
Progressively stricter regulations on limiting or eliminating certain corrosion inhibitors and reducing the 
amount of volatile organic compounds (VOCs) have motivated recent research efforts on new corrosion 
inhibitors and coating formulation development. Some of the new inhibitor chemistries exhibit excellent 
corrosion protection, such as organic inhibitors that form insoluble metal complexes or water soluble 
inhibitors that provide quick response at initiation of corrosion, but their incorporation into coatings has 
been difficult due to their high reactivity with resin systems, or high solubility that lead to blistering and 
leaching. Smart coatings with pH sensitive microcontainers can be used to overcome these challenges 
by isolating the inhibitor from the environment through encapsulation.  
Various corrosion inhibitors have been encapsulated into pH sensitive microcontainers and incorporated 
into coating systems for carbon steel and aluminum alloy protection. This paper provide the details on 
coating sample preparation, evaluation methods, as well as test results of the inhibiting function of smart 
coatings. 
 

EXPERIMENTAL PROCEDURE 
 

Five coating systems were tested with different encapsulated corrosion inhibitors, as shown in Table 1. 
For carbon steel protective coating systems, zinc-rich primer, solvent based epoxy, and water based 
coatings are tested. Epoxy system is tested also for aluminum 2024 substrate.  
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Table 1: Substrate and Coating Systems Tested with Different Encapsulated Corrosion 
Inhibitors 

 

Substrate Coating Encapsulated Inhibitor(s) Test Performed 

Carbon Steel Inorganic Zinc Primer 
8-HQ 
Water-soluble inhibitors 
Inorganic compound 

6000 Hours Salt Fog 
Atmospheric exposure 

Zinc Phosphated 
Carbon Steel 

Epoxy System 
8-HQ 
PPA 

10 Days Hot Salt 
Water Immersion 

Carbon Steel Thin Film Epoxy Primer 
Inorganic inhibitor 
Water-soluble inhibitor 
Combination of both 

Atmospheric exposure 

Carbon Steel Water-Based Acrylic 
Water-soluble inhibitor 
Flash rust inhibitor 
Flash rust inhibitor/8-HQ  

1000 Hours Salt Fog 

Aluminum 2024 Epoxy-Amine System 

8-HQ 
2-MBT 
Water-soluble inhibitors 
Hybrid encapsulated 2-MBT 
CMBT/2-MBT 

2000+ Hours Salt Fog 

 
Inorganic zinc primers are the primary protective coating for carbon steel at marine/coastal environments 
such as NASA’s Kennedy Space Center (KSC). Its excellent protection relies on proper surface 
preparation, poor adhesion and performance can result when the carbon steel substrate is not able to be 
prepared properly as in the cases of hard to reach areas and repairs. Zinc phosphate pre-treated carbon 
steel with an epoxy coating system is also used for is a desirable form of protection in certain uses and 
environments. This system is similar to that of the inorganic zinc primer in that a form of zinc is the main 
corrosion protection of the carbon steel, but unlike zinc primer, zinc phosphate alone is not enough to 
protect the carbon steel from corrosion. 
Thin film epoxy primers are used in a production setting where short recoat times are desirable. Even 
though these coatings already provide good adhesion and corrosion resistance, their performance could 
further be improved in certain environments. Next generation corrosion protection of carbon steel involves 
the use of water-based coatings due to their ease of use and significantly lower impacts on the 
environment. Their use is ready to expand if their corrosion protection level can rival that of solvent-based 
systems. 
Protection of aluminum alloy is mainly focused on the development of chromate-free epoxy coating 
systems for aerospace applications.   
 
Inorganic Zinc Primer on Carbon Steel 
 
The first test of inorganic zinc primer was to determine which microcontainer would give the best adhesion 
of inorganic zinc on non-optimally prepared carbon steel substrate. The carbon steel substrate used for 
this test was a 3 in. x 5 in. Q-panel with a Type S ground surface purchased from Q-Labs. Its ground 
surface has a profile of 0.5-1 mil.  The inorganic zinc coating used for this testing was Zinc Clad II Plus 
supplied by Sherwin Williams. The testing of the coated panels was carried out in a QFOG CCT-1100 
salt fog chamber, purchased from Q-Labs, running according to ASTM B1175.  Panels were placed in the 
chamber and removed after 6000 hours of continuous testing for evaluation.   
After determining the three candidates that gave the best adhesion results in the salt fog chamber, they 
were used for further testing. The three candidates chosen for further testing were 8-Hydroxyquinoline 
(8-HQ) microcontainers, a combination of organic encapsulated water-soluble inhibitors, and an inorganic 
compound. The next test was designed to simulate an inorganic zinc coating that needs to be repaired 
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due to a compromised area. A large 6 in. x 12 in. carbon steel panel was spray coated with the same 
inorganic zinc coating used in the previous test, Zinc Clad II Plus. A middle portion of the panel was then 
cleaned away to simulate a small area of repair. This section was then repaired with various coatings, 
some containing microcontainers, and then were tested at NASA’s Beach Corrosion Test Site under 
atmospheric exposure conditions to compare the performance of the repaired areas. 
 
Epoxy Coating on Zinc Phosphate Pre-Treated Carbon Steel 
 
Zinc phosphate pre-treated carbon steel panels were used in this test and provided a thin layer of a zinc 
compound directly on the carbon steel similar to a galvanic zinc layer. An epoxy coating was then applied 
over this pre-treatment. The epoxy coating was a two-component solvent based formulation with a low 
molecular weight epoxy resin solution mixed with an isocyanate hardener. It was applied to the substrate 
using a #36 formed rod purchased from Gradco. After coating, the panels were cured at 170oC for 20 
minutes. Panels were then scribed with an “X” pattern by hand using a template. The completed panels 
were tested for 10 days immersed in a heated (55oC) 5% sodium chloride (NaCl) solution. 
 
Thin Film Epoxy Primer with Polyurethane Top Coat on Carbon Steel 
 
For this test, the substrate used was a 3 in. x 6 in. carbon steel panel with no pre-treatment. The thin film 
epoxy primer was spray applied to the carbon steel resulting in a dry film thickness of 1-2 mils. The epoxy 
primer was then top-coated with a polyurethane. Microcontainers with corrosion inhibitors were 
incorporated into the epoxy primer before it was spray applied for additional corrosion protection. There 
were no noticeable issues with the incorporation of the microcontainers.  Four different coatings were 
made to see which microcontainers were the most effective: one with no microcontainers, a second with 
organic encapsulated inorganic inhibitor, a third with organic encapsulated water-soluble inhibitor, and a 
fourth with a combination of both. The completed coatings were then placed at NASA’s Beach Corrosion 
Test Site for atmospheric corrosion resistance testing.   

 
Water-Based Acrylic Coating on Carbon Steel 
 
This test was designed to use a water-soluble inorganic and flash rust inhibitors to improve the 
performance of a water-based coating. The carbon steel substrate used for this test was a 3 in. x 5 in. Q-
panel with a Type S ground surface. The water-based coating selected for this test was an acrylic, 
Carbocrylic 3359 supplied by Carboline. Two coats of the coating were used with the bottom coat 
incorporating the microcontainers for testing. The top coat was just the Carbocrylic with no additional 
additives and was used on all systems. The microcontainers were incorporated into the coating with no 
noticeable issues. The coating was applied to the substrate using the #80 formed rod. The coating was 
allowed to fully cure for three weeks before being tested. A single vertical scribe, in the horizontal center 
of the panel, was done with a hand scribe tool and a ruler. The completed coatings were then placed in 
the salt fog chamber and tested according to the ASTM B1175 standard for 1000 hours. 
 
Epoxy-Amine Coating for Aluminum Alloy 
 
The aluminum substrate used for this test was a 3 in. x 6 in. panel of aluminum 2024-T3 bare supplied 
by Tri-Tech Metals. An epoxy-amine coating system was selected for this test as a model coating for the 
protection of aluminum alloy and to test the effectiveness of the added inhibitor microcontainers for 
corrosion protection. The epoxy-amine coating is a 2-componant solvent-based formulation using a 
bisphenol-A epoxy resin mixed with a polyamine/amine functional polyamide resin blend with an added 
silane to enhance adhesion. Pigments in the coating include titanium dioxide, carbon black, and 
magnesium oxide with a solvent blend of butanol, xylenes, and parachlorobenzotrifluoride. 
The substrate was prepped by abrading the surface to aid in adhesion and cleaning it using soap and 
warm water followed by an acetone wash and forced air drying. After prepping the substrate, the coating 
was applied using the #80 formed rod. The coating was allowed to cure for 7 days before being tested. 
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Scribes in the shape of an “X” where made using a computerized engraving machine to ensure 
consistency from one panel to the next. 
Microcontainers with corrosion inhibitors were incorporated into the epoxy-amine coating before it was 
applied for additional corrosion protection. Different coatings were made with various types of 
microcontainers loaded with various inhibitors to compare their corrosion protection performance. There 
were no noticeable issues with the incorporation of the microcontainers. The completed coatings were 
then placed in a salt fog chamber and tested according to the ASTM B1175 standard. 
 

RESULTS 
 
Figure 2 shows a panel from each of the best performing inorganic zinc primer systems versus that of a 
control after being tested in the salt fog chamber for 6000 hours. These panels were used to test the 
effect of encapsulated inhibitor on the adhesion of inorganic zinc primer on carbon steel with minimum 
surface preparation. The control (Fig. 2A) has many areas where a loss of adhesion has occurred and 
blisters with corrosion of the substrate have formed or the zinc in the primer itself has begun to corrode, 
as evidenced by the white zinc oxide on the panel. Coatings containing encapsulated inhibitors (Fig. 2B, 
C, and D) show no signs of any loss of adhesion and contain no coating blistering or significant zinc 
corrosion. 
 

          
 
Figure 2: Carbon steel coated with inorganic zinc coating A) containing no micro containers, B) 

containing encapsulated 8-HQ, C) containing a combination of encapsulated water-soluble 
inhibitors, and D) containing an inorganic compound, tested for 6000 hours according to ASTM 

B117 
 
Figure 3 shows panels from each of the five systems tested in the second study of inorganic zinc primer 
that involves coating repair. These panels have been in atmospheric test conditions for 18 months with 
testing still ongoing. Two controls were selected for this test, one is an epoxy-mastic coating currently 
being used to repair inorganic zinc (Fig. 3A) and the other is repaired with inorganic zinc primer containing 
no encapsulated inhibitor (Fig. 3B). Epoxy-mastic coating is performing better than expected showing no 
loss of adhesion or corrosion but is chalking and fading due to UV degradation.  Inorganic zinc primer 
control is not showing any loss of adhesion but has zinc corrosion product appearing as evidenced by 
the white spots in the repaired section of the coating. The coating containing encapsulated 8-HQ (Fig. 
3C) is performing very well showing no adhesion loss or zinc corrosion. Coatings containing encapsulated 
water-soluble inhibitors (Fig. 3D) and an inorganic compound (Fig. 3E) are performing similarly with no 
loss of adhesion but are showing some zinc corrosion. 
 

(A) (B) (C) (D) 
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Figure 3: Carbon steel coated with inorganic zinc coating and then patched with A) epoxy-
mastic coating (currently used) B) inorganic zinc control, C) inorganic zinc containing 

encapsulated 8-HQ, D) inorganic zinc containing a combination of encapsulated water-soluble 
inhibitors, and E) inorganic zinc containing an inorganic compound, tested for 18 months at the 

Beach Corrosion Test Site 
 
Figure 4 shows zinc phosphate pre-treated carbon steel panels coated with an epoxy coating with and 
without microcontainers tested for 10 days immersed in a hot 5% NaCl solution (55oC).  After testing is 
complete and the panels are dry, the coating is tape pulled to measure creep from scribe. The control 
coating (Fig. 4A) has a creep from scribe of 1.5 mm.  A coating containing encapsulated 8-HQ (Fig. 4B) 
has a creep from scribe of just 0.1 mm. This significant decrease in creep from scribe compared to control 
shows the 8-HQ microcontainers provide protection from corrosion and help to maintain coating adhesion 
around the scribe. Figure 4C shows the coating containing encapsulated Phenylphosphonic Acid (PPA) 
with a creep from scribe of 1.0 mm providing some corrosion protection but not a significant amount as 
seen with 8-HQ. 
An increase in corrosion protection was observed when 8-HQ microcontainers are combined with either 
the inorganic zinc primer or in the epoxy coating applied over zinc phosphate. Since zinc is the common 
element between these two, there appears to be a synergistic effect to aid in protecting carbon steel from 
corrosion when 8-HQ and zinc are combined. It is well known that 8-HQ and zinc will form a metal 
complex, and it is likely that this metal complex has contributed to the corrosion protection properties of 
the coatings that leads to these results. 
 
 

(A) (B) 

(C) (D) 

(E) 
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Figure 4: Zinc phosphate pre-treated carbon steel coated with epoxy coating A) control, B) 
containing encapsulated 8-HQ, and C) containing encapsulated PPA, tested for 10 days 

immersed in a hot 5% NaCl salt solution 
 
Figure 5 shows a carbon steel panel coated with one of four thin film epoxy primer systems tested after 
both 6.5 months and 17.5 months in atmospheric conditions. The control coating (Fig. 5A) shows high 
levels of corrosion from the scribe after 6.5 months with significant corrosion from the scribe moving 
upward over the rest of the panel after 17.5 months. This is also leading to significant amounts of 
corrosion under the coating causing it to delaminate and fall off. A coating containing encapsulated 
inorganic inhibitor (Fig. 5B) shows less corrosion from the scribe at the 6.5 month and less corrosion 
spreading up the panel from the scribe at 17.5 months. Fig. 5C shows a coating containing an 
encapsulated water-soluble inhibitor performs the best in terms of the corrosion being limited to just creep 
from scribe with no other significant amounts of corrosion on the panel. Similarly, the coating containing 
a combination of these encapsulated inhibitors (Fig. 5D) performs the best in terms of creep from scribe 
corrosion but shows corrosion around the rest of the panel. These last three coating systems (Fig. 5B, 
C, and D) show improvement over the control coating displaying the ability of encapsulated inhibitors to 
improve the corrosion protection of a thin film epoxy primer.  
 

          
  

Figure 5: Carbon steel coated with thin film epoxy coating, A) control, B) containing 
encapsulated inorganic inhibitor, C) containing encapsulated water-soluble inorganic inhibitor, 

D) containing a combination of B and C, top-coated with a polyurethane then tested for 6.5 
months (left) and 17.5 months (right) at NASA’s Beach Corrosion Test Site 

 

(A) (B) (C) 

(A) (B) (C) (D) 
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Figure 6 shows carbon steel panels from each of the best performing microcontainers tested in a water-
based acrylic coating versus that of a control after being tested in a salt fog chamber for 1000 hours. The 
control coating (Fig. 6A) shows blistering and corrosion from the scribe spreading across the panel. The 
other three coatings containing encapsulated water-soluble inhibitor (Fig. 6B), with flash rust inhibitor 
(Fig. 6C), and with a combination of flash rust inhibitor and 8-HQ (Fig. 6D) all perform similar with only 
small amounts of blistering and corrosion occurring around the scribe. These coatings show significant 
improvement over the control coating displaying the ability of the encapsulated inhibitors to improve the 
corrosion protection of a water-based acrylic coating. 
 

          
 

Figure 6: Carbon steel coated with water-based acrylic coating A) control, B) containing 
encapsulated water-soluble inhibitor, C) containing encapsulated flash rust inhibitor, and D) 

containing a combination of encapsulated flash rust inhibitor and 8-HQ, tested for 1000 hours 
according to ASTM B117 

 
Figure 7 shows aluminum 2024 panels coated with epoxy-amine coating containing microcontainers 
compared to a control panel after being tested in the salt fog chamber to 2000 hours. The control coating 
(Fig. 7A) shows various signs of corrosion with a discolored, darkened scribe that is no longer shiny like 
it was before testing. There are also local spots of corrosion in the scribe as evidenced by the white 
aluminum oxide corrosion product. It is also beginning to blister away from the scribe. The coatings 
containing encapsulated 8-HQ, 2-Mercaptobenzothiazole (2-MBT), and water-soluble inhibitor (Fig. 7B, 
C, and D respectively) all perform similarly with discoloration of the scribe, local spots of corrosion in the 
scribe, and blistering beginning to spread in the coating from the scribe. The best performers are the 
encapsulated water-soluble inhibitor (Fig. 7E) and the hybrid encapsulated 2-MBT (Fig. 7F) with the 
encapsulated water-soluble inhibitor just having some discoloration in the scribe with a few local spots of 
corrosion. The hybrid encapsulated 2-MBT has excellent performance with only slight discoloration of the 
scribe, and in some areas, it’s still shiny. The last coating (Fig. 7G) contains an encapsulated mixture of 
different forms of 2-MBT. It also has the discoloration in the scribe along with local areas of corrosion, 
but there is no blistering of the coating. Instead, it has local areas of corrosion away from the scribe and 
was the only system to do this. 
 

(A) (B) (C) (D) 
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Figure 7: Epoxy-Amine coating tested on Aluminum 2024-T3 bare, A) containing no 
microcontainers, B) containing 8-HQ microcontainers, C) containing 2-MBT microcontainers, 
D,E) containing encapsulated water-soluble inhibitors, F) containing hybrid encapsulated 2-
mecaptobenzothiazole, G) encapsulated mixture of 2-MBT, tested to 2000 hours according to 

ASTM B117 
 
The best performing coatings containing encapsulated inhibitors for a given substrate are summarized in 
Table 8. For an inorganic zinc primer on carbon steel or epoxy system on zinc phosphate pre-treated 
carbon steel, the encapsulated 8-HQ has shown the ability to protect the carbon steel substrate likely 
through its interaction with zinc in the system.  Thin film epoxy primer containing encapsulated water-
soluble inhibitor and its combination with an encapsulated inorganic inhibitor have both shown the ability 
to enhance the protection of carbon steel over control in atmospheric conditions. The encapsulated flash 
rust inhibitor and water-soluble inhibitor have both significantly improved the corrosion protection of a 
water-based coating for carbon steel resulting in 1000 hours of salt fog performance.  For aluminum alloy 
protection with an epoxy-amine coating, the encapsulated water-soluble inhibitor and hybrid 
encapsulated 2-MBT have both demonstrated the ability to protect the aluminum panel away from the 
scribe but with the later even protect the scribe area. 
 
 
 
 

(A) (B) (C) (D) 

(E) (F) (G) 
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Table 8: Best Performing Encapsulated Corrosion Inhibitors for Each Coating System Tested 
 

Substrate Coating Best Performing 
Encapsulated Inhibitor(s) 

Carbon Steel Inorganic Zinc Primer 8-HQ 

Zinc Phosphated 
Carbon Steel 

Epoxy System 8-HQ 

Carbon Steel Thin Film Epoxy Primer 
Water-soluble inhibitor 
Combination of inhibitors 

Carbon Steel Water-Based Acrylic 
Water-soluble inhbitor 
Flash rust inhibitor 
Flash rust inhibitor/8-HQ  

Aluminum 2024 Epoxy-Amine System 
Water-soluble inhibitor 
Hybrid encapsulated 2-MBT 

 
CONCLUSIONS 

 
In summary, a smart coating system, based on pH sensitive microcontainers (microparticles and 
microcapsules) has been developed. Various corrosion inhibitors have been encapsulated and 
incorporated into commercial and formulated coatings to test the functionality imparted on the coating by 
the incorporation of the inhibitor microcontainers. Coated carbon steel and aluminum alloy panels were 
tested using salt immersion, salt fog, and coastal atmospheric exposure conditions. All the different 
coating tests performed have shown the versatility of pH-sensitive microcontainers encapsulating various 
inhibitors to provide corrosion protection for carbon steel and aluminum alloy of various coating systems. 
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