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1. INTRODUCTION 
 
Discussions within the international snow remote sensing community over the past two years [1,2] have led to 

encouraging consensus regarding the broad outlines of a dedicated snow observing mission.  The primary 

consensus—that since no single sensor type is satisfactory across all snow types and across all confounding 

factors, a multi-sensor approach is required—naturally leads to questions about the exact mix of sensors, required 

accuracies, and so on.  In short, the natural next step is to collect such multi-sensor snow observations (with 

detailed ground truth) to enable trade studies of various possible mission concepts.  Such trade studies must 

assess the strengths and limitations of heritage as well as newer measurement techniques with an eye toward 

natural sensitivity to desired parameters such as snow depth and/or snow water equivalent (SWE) in spite of 

confounding factors like clouds, lack of solar illumination, forest cover, and topography, measurement accuracy, 

temporal and spatial coverage, technological maturity, and cost. 

 
2. CANDIDATE MEASUREMENT TECHNIQUES AND CONFOUNDING FACTORS 

 
The list of candidate measurement techniques (sensor types) includes passive and active optical sensing, passive 

and active microwave sensing, and gamma radiation sensing.  Of these we exclude gamma sensing as not being 

practical from space.  Below is a brief summary of each measurement technique, including major advantages and 

limitations.   

 
5.1. Passive optical sensing 
 
This category includes multispectral [3] & hyperspectral imaging spectroscopy as well as photogrammetric 

methods.  All sense reflected solar energy at visible and infra-red wavelengths and relate absorption or 

reflectance to snow properties such as snow covered area, albedo, and grain size.  Examples of existing/past 

multispectral sensors include AHVRR, SPOT, MODIS [4], MERIS, and VIIRS.  Lack of solar illumination 

prohibits observing, and clouds and dense forests obscure observations.  Complex topography can be a limitation 

in certain cases. 



 
5.2 Active optical sensing 

Lidar can measure snow depth by differencing altimetry observations taken weeks to months apart.  The 

technique has satisfactory accuracy especially for deeper snow depths (meters) where other techniques suffer.  

SWE can be generated by scaling with estimated snow densities.  As an active technique, solar illumination is not 

required.  But as with other optical techniques, clouds and dense forest obscure the observation.  Accuracy is a 

function of both single-shot altimetry accuracy and knowledge of relative platform position at widely separate 

times.  Examples of airborne lidar include decades of ice sheet observations by LVIS [5] and ATM instruments 

plus more recent snow-in-basin observations by the ASO [6].  Examples of spaceborne lidar include ICESat 1 & 

2, and the upcoming GEDI missions, but spaceborne lidar snow retrieval is still a developing field and some key 

questions remain. 

5.3 Passive microwave sensing 

Natural blackbody emission from soil is attenuated in proportion to the overlying snow burden.  This has been 

exploited for nearly 4 decades by passive microwave sensors from space to produce daily global snow depth, 

SWE, and snow extent products [7,8].  As a microwave technique, solar illumination is not required, and clouds 

are mostly transparent.  However, there is saturation at ~150mm SWE, relatively large footprints (so complex 

topography is an issue), and forest cover to contend with.  Wet snow blocks observing, but conversely melt onset 

is strongly detected.  Numerous heritage instruments exist, but the availability of future instruments is in 

question. 

5.4 Active microwave sensing 

There are several radar techniques that retrieve SWE or depth.  As a microwave technique, solar illumination is 

not required, and clouds are mostly transparent, but wet snow blocks observations while making melt highly 

visible.  SAR-based techniques are of key interest due to their high spatial resolution that is an asset in complex 

topography.  At least 2 frequencies are required for SWE retrievals relying on volume scattering [9, 10], but 

algorithms could use more maturing, particularly with respect to dealing with forest cover.  An interferometric 

technique is potentially applicable, too.  Cost is a big consideration for any spaceborne radar. 

5.5 Confounding factors 

As mentioned above, the recurring confounding factors include clouds and lack of solar illumination for all the 

optical techniques.  For the microwave techniques, forest cover and wet snow are the primary factors.  

Technological maturity and cost are factors for radar and radar/lidar, respectively. 

 
3. EXAMPLE TRADE STUDIES 

 
Clearly, a mission concept that includes all of the above sensor types would be highly complex, risky, and 

unaffordable.  Trade studies are needed to quantify which sensing techniques work well (and which do not) for 



which types of snow and which confounding factors, so that intelligent minimization and leveraging can be 

applied to yield a more practical, less risky, and more affordable overall concept or concepts.  Such a concept 

will not be able to measure snow everywhere all the time for all snow types and for all confounding factors.  

However, this is the normal situation with all Earth observing missions.  The key will be to understand the 

compromises that will need to be made, and for that the snow remote sensing community needs quantitative trade 

studies.  Even before obtaining the multi-sensor field data to actually perform the detailed trade studies, a few 

such key trade studies can still be outlined, and these will be presented. 

 
4. NEXT STEPS NEEDED 

 
The most pressing need is for accurate multi-sensor observation dataset together with accurate ground truth.  This 

needs to cover some number of snow types and with the key confounding factors, but the exact mix is perhaps a 

trade study itself.  The observations are best done via airborne sensors.  A strawman concept for such an 

observation campaign will be outlined. 
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