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Abstract (100-200 word) 

We combine Landsat- and the Moderate Resolution Imaging Spectroradiometer (MODIS)-based 

products in the Simple Biosphere model (SiB2) to assess the effects of urbanized land on the 

continental US (CONUS) surface climate. Using National Land Cover Database (NLCD) 

Impervious Surface Area (ISA), we define more than 300 urban settlements and their 

surrounding suburban and rural areas over the CONUS. 

The SiB2 modeled Gross Primary Production (GPP) over the CONUS of 7.10 PgC (1 PgC= 1015 

grams of Carbon) is comparable to the MODIS improved GPP of 6.29 PgC.  At state level, SiB2 

GPP is highly correlated with MODIS GPP with a correlation coefficient of 0.94. An increasing 

horizontal GPP gradient is shown from the urban out to the rural area, with, on average, rural 

areas fixing 30% more GPP than urbans. Cities built in forested biomes have stronger UHI 

magnitude than those built in short vegetation with low biomass. Mediterranean climate cities 

have a stronger UHI in wet season than dry season. Our results also show that for urban areas 

built within forests, 39% of the precipitation is discharged as surface runoff during summer 

versus 23% in rural areas.  

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

Although urban areas cover less than 1% of the world’s surface, more than 50% o f the world 

population now lives in urban areas (Schneider et al., 2010; UN2008). The process of 

urbanization has strong impacts on ecosystems’ functions, human health, local weather and 

possibly surface climate through various physical land surface changes. One of the major 

impacts of urbanization is the complete loss of activity resulting from permanently replacing 

fertile lands by impervious surfaces (Bounoua et al, 2009; Imhoff et al., 2004; Qureshi, 2010).  

Urban land transformation in the US has reduced the amount of net carbon fixed through 

photosynthesis by 0.04 pg per year or 1.6% of the pre-urban input (Imhoff et al., 2004). A Case 

study (Zhang et al., 2012) shows that about 0.21 Pg carbon is lost in Southern United States due 

to urban land conversion between 1945 and 2007. The initial carbon loss due to land conversion 

may be compensated for after 70-100 years once planted trees and lawns in the urban ecosystem 

gradually accumulates carbon (Zhang et al., 2012).   

The urban heat island (UHI) effect is another significant consequence of urbanization. The UHI 

phenomenon is generally seen as being caused by a reduction in latent heat flux and an increase 

in sensible heat in urban cores as evaporating vegetated lands are replaced by impervious 

relatively low albedo pavement and building materials (Bounoua et al., 2015). This creates a 

difference in surface temperature between urban and surrounding non-urban areas (e.g.; 

Quattrochi and Ridd 1994; Grimmond and Oak 2002; Shepherd and Burian 2003).   

In general, the UHI, as measured by air temperature, is most evident on a clear and windless 

night with peaks in the late evening to early morning hours (Kim and Baik 2002). Arid urban 

areas, however show a relatively weak UHI and sometimes even an urban heat sink as a result of 

the prevalence of irrigated lawns and exotic trees within the urban areas (Diem and Brown 2003, 



Imhoff et al., 2010, Shepherd, 2005 and 2006). The urban heat island phenomenon can also be 

characterized by land surface (skin) temperatures (LST). While LST can be both higher and 

spatially more variable than corresponding air temperatures due to the surface cover 

heterogeneity and complexity (e.g. Nichol 1996, Streutker 2002), they are more closely 

dependent on surface conditions (Owen et al. 1998, Nichol and Wong 2005, Voogt and Oke 

2003).  Since surfaces heat up and cool faster than air, the greatest surface temperatures (LSTs) 

in urban centers are observed around midday versus nighttime for air temperature (Roth et al. 

1989). 

Increased impervious surface area associated with urbanization also affects the natural cycling of 

water. Urbanization can impact precipitation or convection by increasing surface roughness (e.g., 

Bornstein and Lin, 2000), enhancing aerosols for cloud condensation nuclei sources (e.g. Diem 

and Brown, 2003), and UHI-generated convective clouds (Shepherd and Burian 2003, Shepherd 

2005). At the same time, urbanization also changes hydrological processes within watersheds by 

reducing surface infiltration and altering the base flow, increasing peak discharge and surface 

runoff (Dougherty et al., 2006; Du et al., 2012, and Miller et al., 2014, Bounoua et al., 2015.a). 

In this paper we use the Landsat-based ISA from the National Land Cover Dataset (NLCD) 

(Homer et al., 2004) to characterize the urban areas, and MODIS-based biophysical products at 

8-days interval (Bounoua et al, 2015.b) to describe the vegetation phenology within a Climate 

Modeling Grid (CMG) of 0.05° x 0.05° of latitude-longitude to simulate the  impact of 

urbanization as a form of land use on the continental US (referred as CONUS in the rest of the 

paper) surface carbon, energy and water cycles for the year 2001. To do so, we use the Simple 

Biosphere model (SiB2) of Sellers et al. (1996) as modified by Bounoua et al. (2009) to describe 

the physical processes associated with urbanization.   



2.  Methods and Data 

2.1 Land Cover and Biophysical Parameters 

Impervious Surface Area from the NLCD was used to characterize urban land cover (LC) for the 

year 2001. The fractional ISA of the NLCD were retrieved from Landsat 7 Enhanced Thematic 

Mapper Plus and IKONOS discriminating man-made surfaces from natural or vegetated lands  

(Homer et al. 2004). The ISA data was combined with MODIS collection 5 land cover 

(MCD12Q1) for the year 2001. The MODIS MCD12Q1-Type 1 (IGBP) land cover classification 

has 17 distinct cover types including a build-up (Hansen et al., 2000). We retain the percentage 

of Landsat ISA and proportionally distributed the difference between NLCD ISA and MODIS 

build-ups over other non-impervious LC types co-existing in the CMG. The final product 

provides a 2001 land cover gridded map where grid cells may include ISA fractions from 

Landsat and fractions from all MODIS land cover types co-existing in the same CMG (Bounoua 

et al, 2015).   

Additionally, a set of biophysical parameters required for the LSM was generated using the 

MODIS 500m land cover map and the 500m, 8-day composite gap-filled Normalized Difference 

Vegetation Index (NDVI) developed for the North American Carbon Program (NACP) (Tan et 

al. 2011).  In each CMG, the NDVI was averaged over each of the existing LC type.   NDVI 

estimates for impervious surfaces were generated using Landsat data.  The biophysical 

parameters include the fraction of the Photosynthetically Active Radiation (fPAR) absorbed by 

the green vegetation canopy, the Leaf Area Index (LAI), the Greenness fraction (G), the canopy 

roughness length (Z0) and the canopy zero-plane displacement (d) for different land cover types.   

 

  2.2 The Land Surface Model 



The Simple Biosphere model SiB2 of Sellers et al. (1996) as modified by Bounoua et al. (2009) 

is used in this study.  SiB2 is a biophysically based land surface model that computes the 

exchanges of carbon, energy, water, and momentum between the land surface and the 

atmosphere, accounting for 12 distinct vegetation classes (Sellers et al., 1996). The drivers of the 

model include short- and longwave radiation, large-scale and convective precipitation rates, and 

the temperature and wind speed at a reference level above the canopy.  These meteorological 

drivers for the year 2001 are obtained from the Phase 2 of the North American Land Data 

Assimilation System (NLDAS-2) [Mitchel et al. 2004]. 

 

2.3. MODIS Gross Primary Production (GPP) and Land Surface Temperature (LST)  

We compare the SiB2 modeled land surface temperature with MODIS-Terra Version 5, 8-day 

(MOD11A2) LST with high quality control (Wan et al., 2004). LST’s from MODIS are retrieved 

from clear-sky (99% confidence) observations at day time and night time using a generalized 

split-window algorithm (Wan and Dozier 1996).  Comparisons between MODIS LST’s and in-

situ measurements across a wide set of test sites indicate an accuracy better than 1°C with a root 

mean square error RMS (of differences) less than 0.5 °C in most cases (Wan 2008, Wang et al. 

2008).  

In our comparisons, we also used the improved 1km MODIS gross primary production (GPP) 

with high quality control (Zhao et al. 2006, 2010) to compare to the SiB2 predicted GPP. 

MODIS GPP is calculated through the BIOME-BGC model using satellite-derived land cover, 

fraction of photosynthetically active radiation (FPAR), and leaf area index (LAI) as input surface 

vegetation information (Zhao et. al 2006.). The MODIS GPP datasets was obtained from the 



Numerical Terradynamic Simulation Group, School of Forestry, University of Montana 

(http://www.ntsg.umt.edu/).  

2.4. Sampling urban areas over USA 

We use the Landsat-derived National Land Cover Database ISA for 2001 (Xian et al., 2011) to 

define more than 300 cities with an area larger than 10 km2 over the CONUS. This ISA dataset 

characterizes the CONUS urban development as function of the extent and spatial distribution of 

a collection of man-made surfaces within a pixel (e.g.; Yang et al., 2002, Fry et al., 2011, Xian et 

al., 2011). We use a 25% ISA threshold to define the boundary of urban and suburban zones 

(Imhoff et al. 2010; Zhang et al., 2010 and 2012) with urban areas having more than 25% ISA. A 

5km width buffer zone adjacent to and outside the 25% ISA contour defines the immediate 

surrounding suburban area, and a second 5km width buffer zone located 15km to 20km away 

from the 25% ISA contour is defined as the rural zone. We use the terrestrial ecoregion map of 

Olson et al. (2001) to group 300+ US cities into four major biomes: forest, grassland, desert, and 

Mediterranean, each representing an assemblage of biophysical, climate, botanical and animal 

habitat characteristics of a distinct geographical area.   

3. Results 

3.1 Gross Primary Production (GPP) 

We obtained the annual SiB2 modeled GPP over the CONUS by adding monthly GPP for each 

land cover class weighted by its fraction. The modeled total GPP is 7.10 PgC (1 PgC= 1015 

grams of Carbon). This total is closely comparable to the MODIS improved CONUS annual GPP 

(Zhao and Running, 2010) of 6.29 PgC during 2001.  Figure 1 shows the spatial distribution of 

the annual GPP over CONUS calculated from MODIS-algorithm and SiB2 model. Both GPP 

http://www.ntsg.umt.edu/


maps show close agreement at regional scale: high carbon uptake is found in forested regions 

especially in the southeast.  Low carbon uptake is found in the arid and semi-arid regions where 

the vegetation growth is limited by water availability; and in mountains where vegetation growth 

is constrained by low temperatures. However, MODIS improved GPP is missing most of the 

urban cores whereas SiB2 model, with its sub-grid land cover characterization, is capable to 

identify urban vegetation and captures some GPP in urban cores. For all US land area, excluding 

water, croplands cover about 32.1% and account for 38.55% of the annual GPP, ranking as the 

primary land cover type in carbon uptake (Table 1). Grasslands rank the second in terms of area 

and GPP. The impervious surface areas cover 1.06% of the total land in the CONUS and uptake 

0.003 PgC or 0.04% of the total GPP. Even though in term of area, ISA covers a small fraction 

of land, its estimated impact on the carbon uptake is not negligible. For example, if all the ISA is 

replaced by evergreen broadleaf forest, the estimated carbon uptake over the CONUS will 

increase by 0.13 Pg. The numbers from MODIS improved GPP are similar and are shown in 

Table 1. 

Overlaying the state’s boundaries over the GPP maps, we estimated the total GPP for each state 

in the CONUS. We show a strong linear relationship, correlation coefficient of 0.94, between 

SiB2 GPP and MODIS improved GPP (Figure 2). At this spatial scale, on average, SiB2 GPP is 

about 11% larger than that of MODIS. Both GPP maps show Texas has the most annual GPP, 

followed by California. On the other hand Delaware, Rhode Island, and the District of Columbia 

have the least annual GPP.  

Using the spatial distribution of the NLCD ISA and the annual GPP, we define more than 300 

cities over the CONUS with areas larger than 10 km2. Further grouping following the ecological 

map led to 180 cities built in forests, 90 in grasslands, 8 in a Mediterranean biome, and 29 in arid 



and semi-arid biomes. Figure 3 shows the average annual GPP for each ecological grouping. As 

expected, SiB2 simulated higher GPP for cities embedded within forest biomes, followed by 

those urban areas built in short vegetation such as grasslands. Low GPP is simulated in desert 

regions with limited water availability. Within the same biome, the average annual GPP in the 

rural area is larger than that of the suburban, itself larger than that of the urban area. For example, 

in the forested biome, the average rate of carbon uptake is about 1028 gC/m2 in the urban area, 

1256 gC/m2 in suburban area, and 1340 gC/m2 in the rural area. The process of urbanization, 

replacing the natural vegetation with impervious surface areas, creates a horizontal GPP gradient 

between the urban and the rural areas. On average, rural zones fix about 30% more GPP than the 

urban areas.   

3.2 Surface temperature and surface Urban Heat Island (SUHI) 

SiB2 model predicts three temperatures: canopy, ground, and deep soil temperatures (Sellers et 

al. 1996). In this analysis, we use both the canopy and the ground temperatures to examine the 

temperature difference between ISA and other vegetated land cover types, and the SUHI of cities 

built in different biomes, defined as the surface temperature difference between the urban core, 

fully impervious, and the surrounding vegetated lands. The SUHI is different from the UHI 

obtained from air temperature (Roth et al. 1989).  

To do so, we calculate the weighted surface temperature of all the CMGs that have both ISA 

(>1%) and other vegetated land covers. Excluding inland water, ISA accounts for 6% of all these 

CMGs (with ISA>1%) and the other vegetated land cover types account for 94%.  Figure 4 

shows the spatial distribution of ISA and within-CMG summer (June-July-August) temperature 

difference between the ISA and the fraction-weighted vegetated cover types co-existing in the 



CMG. In general, the ISA is warmer than the vegetated land cover in most of the CONUS. Cities 

in high latitudes tend to show larger temperature differences than those in low latitudes. This is 

partially due to the fact that the cooling effect of the vegetation is decreased in warmer climate 

when vegetation experiences a high temperature stress and scales down its photosynthetic 

activity (Bounoua et al., 2009). Our results also show that the ISA in CMGs located in arid and 

semi-arid regions have smaller temperature differences; and sometimes the non-urban land cover 

is warmer than the ISA, generating a Surface Urban Heat sink (SUHS). The reversal in 

horizontal surface temperature gradient in these arid cities, such as Phoenix and Las Vegas is due 

to introduction in urban areas of exotic trees and lawns maintained by irrigation and fertilization 

(Imhoff et al., 2010).  In these mostly bare CMGs, the bare soils behave like the ISA, most of the 

absorbed solar energy is restored as sensible heat flux, reducing thus the horizontal temperature 

gradient between ISA and non-urban cover (Bounoua et al., 2009).   Figure 5 illustrates the 

annual cycle of monthly average surface temperature for ISA and vegetated lands, as well as 

their difference. The ISA has a peak monthly mean surface temperature around 27.9 oC in 

August and a minimum around 1.6 oC in January. By contrast, the weighted surface temperature 

for all vegetated land covers reaches a maximum of 26.1 oC in August and a minimum of 0.2 oC 

in January. Over the CONUS, this surface temperature difference is larger than 1.5 oC all year 

long except for January and November.  It is larger than 2 oC for the months of May and June. 

This temperature difference between ISA and other vegetated land cover types is not the typical 

SUHI. However, because it accounts for the entire ISA and land cover fractions over the 

CONUS, it may be considered as the average impact of ISA on surface temperature in urban 

areas. This result clearly indicates the continental scale impact of urbanization on the CONUS 

surface climate, an average monthly mean warming of more than 1.5  oC. 



Using the same 300+ cities, we also calculate the urban heat island using both the ground surface 

and the canopy temperature simulated by SiB2. As discussed in the previous section, we use the 

average surface temperature inside the urban boundary as the urban temperature and the average 

temperature of the 15-20 km buffer as the rural temperature. Figure 6 shows the monthly SUHI 

and the monthly precipitation for urban areas built in forested and Mediterranean biomes. The 

magnitude of SUHI from urban areas built within forests is maximum during summer.  SUHI 

generated in cities built within grasslands (not shown) have similar seasonal variations but 

smaller magnitudes. On the other hand, the UHI generated in cities built in a Mediterranean 

biome (e.g.; cities in California) is more than 2oC in winter and spring and less than 1oC in 

summer. This pattern agrees well with the seasonal variations of the monthly precipitation: wet 

seasons in winter and spring and dry seasons in summer and fall. In general in forested biomes 

the ground is shaded, especially during the summer when canopy are covered with leaves, and 

cooler than the exposed canopy and therefore generate a much stronger contrast with the urban 

ground temperatures.  This effect is less visible in cities built in Mediterranean biome where 

trees are sparse and the ground is exposed.  In the latter case the ground-based SUHI is similar to 

the canopy generated SUHI during the fall through spring, but much less during summer.  

We compared the average summer (June-July-August) SUHI in the 300+ cities using different 

temperature products including SiB2 modeled ground and canopy temperatures, and MODIS 

Terra 8-day land surface temperature (SiB2 modeled LSTs are calculated based on monthly 

mean outputs and the SUHI reflects the temperature difference between urban and surrounding 

rural areas for the season. By contrast, MODIS-Terra LSTs are calculated as the average of 

daytime (10:30) and nighttime (22:30) measurements; monthly mean SUHI are then estimated 

using these 8 day LSTs. Table 2 shows for cities built in forest, SiB2 simulates an average 



summer UHI between the urban core and surrounding rural area, 15-20 km away from the urban, 

of 0.91 oC when using ground temperature and 0.62 oC when using canopy temperature.  When 

using the LST from MODIS we estimate a much larger SUHI of 3.58 oC.  For cities built in other 

biomes, the results are similar but with smaller magnitude. In high biomass forested biomes, 

urban areas are surrounded by dense and tall vegetation which intercepts and re-evaporates 

precipitation at potential rates and diffuses water from the root zone to the atmosphere during the 

process of photosynthesis, thus keeping the surrounding regions much cooler than the less 

vegetated urban core. In contrast, urban areas dominated by shorter, less dense, vegetation such 

as grassland produce a weaker SUHI.  In these regions, the zones surrounding the urban core are 

sparsely vegetated and restore an important part of the absorbed solar energy as sensible heating; 

thus reducing the horizontal temperature gradient between the urban and surrounding rural areas. 

3.3 Precipitation and Surface Runoff 

In SiB2, the precipitation is distributed into canopy interception and throughfall components. 

Canopy interception either evaporates at the potential rate or contributes to throughfall when the 

canopy holding capacity is exceeded. The combined canopy water is added to the ground liquid 

water store from which it either evaporates or infiltrates into a shallow surface layer (2cm for all 

vegetated lands and 2mm in impervious surfaces) if the ground storage capacity is reached. 

When the infiltration rate is higher than the soil infiltration capacity, the excess water contributes 

to surface runoff (Bounoua et al, 2009).   

We calculated the seasonal precipitation and surface runoff for the same 300+ cities over the 

CONUS grouped within the four major biomes described above. We first calculated the monthly 

precipitation for each urban area limited by a 25% ISA contour, and for the surrounding rural 



area located within a 5km wide ring 15 km away from the 25% ISA contour. Given the satellite 

measured land cover composition and the SiB2 modeled surface runoff for each land cover type 

within each CMG, we estimate the incoming seasonal average precipitation, the fraction-

weighted seasonal average surface runoff (the runoff from each LC weighted by its fraction 

within the CMG) and the ratio of surface runoff to precipitation for each of the 300+ cities and 

their corresponding rural areas. We then grouped the cities into the four biomes. Table 3 shows 

that for cities built within forested areas, precipitation has a strong seasonal variation ranging 

from about 63mm in winter (December-January-February) to about 118 mm in summer (June-

July-August). In contrast, in cities built in grasslands and desert areas, precipitation has less 

seasonal variation with the magnitude of precipitation in desert areas less than half of that in 

forest. The precipitation seasonal cycle in cities built in the Mediterranean ecoregion is in 

opposition of phase with that of cities built in forested regions, with the maximum precipitation 

occurring in winter (81mm) and the minimum in summer (6mm). The precipitation is almost 

evenly distributed between the urban area and its surrounding rural area in each biome.   

For cities built in forest, 39% of the precipitation is expelled as surface runoff during summer in 

the urban area versus 23% in the rural areas. Cities built in grasslands show that about 70% of 

the incoming precipitation is discharged as surface runoff in urban area versus 49% in rural area. 

Mediterranean cities have the most precipitation in winter and expel 69% of it as urban surface 

runoff versus only 17% in rural areas, whereas, during the season of maximum precipitation, 

cities built in arid and semi-arid regions (desert) expel about 30% of precipitation as surface 

runoff in the urban area versus 14% outside of it. In general, vegetation canopy reduces surface 

runoff by intercepting precipitation on leaves and barks which re-evaporates at potential rates 

and by holding and using water in the root layer. By contrast, the impervious surface area 



strongly reduces the infiltration of water into the ground and because of lack of vegetation it 

significantly increases the surface runoff.  In our study, the urban area and its surrounding rural 

zone contain a mix of impervious and vegetated surfaces. The relatively high ISA in urban areas 

results in a large surface runoff to precipitation ratio compared to the more vegetated rural areas. 

Considering precipitation is evenly distributed between the urban and surrounding rural area, this 

ratio could be used to inform about the distribution of surface runoff given a rainfall prediction 

event. This ratio may also be used in designing cities with specific LC elements arrangement that 

will produce a desired surface water distribution (Bounoua et al., 2015). 

The canopy water holding capacity is affected by the seasonal variation in canopy structure, such 

as the leaf area index (Link et al, 2004). As deciduous leaves drop during winter, canopy water 

holding capacity decreases and surface runoff increases. Figure 7 shows the SiB2 modeled 

canopy water holding averaged over urban, suburban, and rural area within the four major 

biomes. In general, dense tall canopies, such as forest and trees in the Mediterranean ecoregions, 

have larger water storage than sparse short canopies in grasslands and the deserts. In vegetated 

biomes, canopy water storage in the middle of the growing season is more than twice that 

observed outside of the growing season. By contrast, canopy water holding capacity is less than 

0.1mm all year long in the desert biome.  

4. Conclusion 

We use a biophysically based land surface model, SiB2 to examine the urbanization effect on 

carbon budget, surface energy, and water over the CONUS.  

Over the CONUS, the SiB2 modeled GPP is 7.10 PgC which is comparable to the MODIS 

improved GPP of 6.29 PgC. MODIS improved GPP is missing most of the urban cores where 



SiB2 model is capable to identify some GPP over the urban area. The process of urbanization, 

replacing the natural vegetation with the impervious surface area, produces the horizontal GPP  

gradient increasing from the urban area to rural area. Our results show that surrounding rural area 

can fix 30% more GPP than the urban area.    

SiB2 modeled temperatures show strong signal of surface urban heat islands at local (CMG), 

regional (biome) and continental (CONUS) scales. At local scale, CMG located at high latitudes 

have larger SUHI than those in low latitudes, which is partially due to the vegetation evaporation 

cooling decreases in warmer climate under high-temperature stresses. On the other hand at 

regional scale the difference in surface temperature between ISA and other vegetated land covers 

is more pronounced in cities built in vegetated biomes, whereas at continental scale urban places 

are simulated to be warmer than rural areas by about 1.5oC year around. We calculated the 

summer SUHI of 300+ US cities grouped by four major biomes. Cities built in high biomass 

forested biomes have stronger UHI magnitude than those built in shorter low biomass biomes. 

Furthermore, Mediterranean cities have a stronger UHI in wet season than dry season.  

We estimate the weighted monthly surface runoff for each urban and its surrounding rural area 

and  show that for cities built within forests, about 39% of the precipitation is expelled as surface 

runoff during summer (June-July-August) in the urban area versus 23% in rural areas. By 

contrast, in cities built in grassland this ratio is 70% and 49 % in urban and rural, respectively. 

Considering precipitation is closely distributed between the urban and surrounding rural area, 

this ratio is informative about the effect of LC on surface runoff and can be used as an indicator 

for projecting the distribution of surface runoff given a rainfall prediction event.  
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Table 1: Land Cover distribution (%) and annual 

Gross Primary Production over the CONUS for each 

LC class and LC group. 

  

 LC name 

Fraction 

of LC (%) 

SiB2 

GPP (Pg) 

Fraction of 

SiB2 GPP (%) 

MODIS 

GPP (Pg) 

Fraction of 

MODIS GPP (%) 

Broadleaf 

Evergreen  0.3 0.04 

0.50 0.05 

0.80 

Broadleaf 

Deciduous 6.67 0.78 

10.97 0.66 

10.50 

Mixed 

Forest 6.56 0.59 

8.28 0.75 

11.93 

Needleleaf 

Evergreen 4.83 0.34 

4.84 0.44 

7.00 

Needleleaf 

Deciduous 0.03 0.002 

0.03 0.002 

0.03 

Savanna 8.02 0.86 12.15 0.65 10.34 

Grassland 28.13 1.58 22.19 1.05 16.71 

Shrubland 10.82 0.15 2.13 0.26 4.14 

Barren 1.48 0.02 0.31 0.06 0.95 

Cropland 32.1 2.74 38.55 2.36 37.56 

Urban 1.06 0.003 0.04 0.002 0.03 

Total 100 7.10 100 6.29 100 

 

  

http://dx.doi.org/10.1029/2004JG000004


Table 2: Average summer (June-July-August) UHI of USA cities. The 300+ cities are grouped to 

4 different biome types according to (Olson et al. 2001). The UHI is calculated from SiB2 

simulated monthly mean ground and canopy temperatures, MODIS-Terra 8-day LST.  

 

 SiB2 ground T SiB2 canopy T MODIS LST 

Forest 
0.91 0.62 3.58 

Grass 
0.55 0.58 2.17 

Desert 
0.62 0.80 1.14 

Mediterranean 
0.88 1.12 1.21 

 

  



Table 3: Seasonal precipitation using North American Land Data Assimilation System (NLDAS) and surface runoff to precipitation 

ratio (R/P) for urban areas and rural areas grouped by four major biomes. More than 300 cities with area larger than 10 km2 are 

included in this analysis.  

  

Forest Grass Mediterranean Desert 

Urban Rural Urban Rural Urban Rural Urban Rural 

Precipitation R/P Precipitation R/P Precipitation R/P Precipitation R/P Precipitation R/P Precipitation R/P Precipitation R/P Precipitation R/P 

DJF 62.89 39 61.65 12 78.06 26 77.24 8 81.20 69 80.54 17 28.51 24 28.56 5 

MAM 97.58 35 96.37 15 82.20 41 80.83 25 27.08 45 27.44 25 33.37 20 33.37 9 

JJA 117.66 39 116.88 23 77.28 70 75.99 49 6.03 50 4.66 38 38.43 30 37.20 14 

SON 77.00 50 74.99 26 75.39 52 75.11 32 29.70 66 29.98 37 22.26 83 21.57 28 

 

  



 

 

 

Figure 1: MODIS GPP and SiB2 model GPP of USA in 2001 in gram carbon. The 1 km MODIS GPP 

from NTSG group is aggregated to 0.05 degree for comparison.  

  



 

Figure 2: The relationship between MODIS GPP and SiB2 output GPP at each state for CONUS 

(excludes Hawaii and Alaska). 
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Figure 3: Average SiB2 GPP (with 95% confidence interval) at urban, suburban, and rural zones 

for more than 300 cities in the CONUS. Cities are grouped by biomes defined by (Olson et al. 

2001). Urban area is defined by 25% NLCD ISA contour. The Suburban area is a 5km wide ring 

outside the urban area and the rural area is defined by a 5km wide ring, 15-20km away from the 

urban (25% contour).  
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Figure 4: Temperature difference between impervious surface area and vegetated land cover 

types co-existing in the CMGs. Top panel shows the ISA distribution over the CONUS. Bottom 

panel shows the averaged summer (June-July-August) SiB2 modeled canopy temperature 

difference between ISA and weighted vegetated land cover types in each CMG.  Only CMG with 

ISA larger than 1% are included in this analysis (see text for details) 



 

Figure 5: Annual average SiB2 modeled canopy temperature (left axis) for impervious surface 

area (red color) and the weighted vegetated land covers (green color) for all the ISA CMGs in 

USA. The average temperature difference is shown in grey bars (right axis).   
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Figure 6: Monthly average surface UHI (SUHI) between urban centers and surrounding rurals for cities 

built in forest and Mediterranean biomes in Celsius (left axis). SUHIs from both ground and canopy 

temperatures are shown in dark and light grey bars, respectively. The monthly North American Land 

Data Assimilation System (NLDAS) precipitation is also shown as a green solid line (right axis).    
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Figure 7: Monthly average SiB2 modeled canopy water storage at urban (red), suburban (blue), and rural 

area (green) grouped by biomes.  
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